检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Josua Käser Thomas Nagy Patrick Stirnemann Thomas Hanne
机构地区:[1]School of Business,University of Applied Sciences and Arts Northwestern Switzerland,Olten,4600,Switzerland [2]Institute for Information Systems,University of Applied Sciences and Arts Northwestern Switzerland,Olten,4600,Switzerland
出 处:《Computers, Materials & Continua》2025年第4期201-217,共17页计算机、材料和连续体(英文)
摘 要:We analyze the suitability of existing pre-trained transformer-based language models(PLMs)for abstractive text summarization on German technical healthcare texts.The study focuses on the multilingual capabilities of these models and their ability to perform the task of abstractive text summarization in the healthcare field.The research hypothesis was that large language models could perform high-quality abstractive text summarization on German technical healthcare texts,even if the model is not specifically trained in that language.Through experiments,the research questions explore the performance of transformer language models in dealing with complex syntax constructs,the difference in performance between models trained in English and German,and the impact of translating the source text to English before conducting the summarization.We conducted an evaluation of four PLMs(GPT-3,a translation-based approach also utilizing GPT-3,a German language Model,and a domain-specific bio-medical model approach).The evaluation considered the informativeness using 3 types of metrics based on Recall-Oriented Understudy for Gisting Evaluation(ROUGE)and the quality of results which is manually evaluated considering 5 aspects.The results show that text summarization models could be used in the German healthcare domain and that domain-independent language models achieved the best results.The study proves that text summarization models can simplify the search for pre-existing German knowledge in various domains.
关 键 词:Text summarization pre-trained transformer-based language models large language models technical healthcare texts natural language processing
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49