检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jeng-Shyang Pan Mengfei Zhang Shu-Chuan Chu Xingsi Xue Václav Snášel
机构地区:[1]College of Computer Science and Engineering,Shandong University of Science and Technology,Qingdao,266590,China [2]School of Artificial Intelligence,Nanjing University of Information Science and Technology,Nanjing,210044,China [3]Department of Information Management,Chaoyang University of Technology,Taichung,41349,Taiwan,China [4]Fujian Provincial Key Laboratory of Big Data Mining and Applications,Fujian University of Technology,Fuzhou,350118,China [5]Faculty of Electrical Engineering and Computer Science,VŠB-Technical University of Ostrava,Ostrava,70833,Czech Republic
出 处:《Computers, Materials & Continua》2025年第4期475-496,共22页计算机、材料和连续体(英文)
摘 要:Data clustering is an essential technique for analyzing complex datasets and continues to be a central research topic in data analysis.Traditional clustering algorithms,such as K-means,are widely used due to their simplicity and efficiency.This paper proposes a novel Spiral Mechanism-Optimized Phasmatodea Population Evolution Algorithm(SPPE)to improve clustering performance.The SPPE algorithm introduces several enhancements to the standard Phasmatodea Population Evolution(PPE)algorithm.Firstly,a Variable Neighborhood Search(VNS)factor is incorporated to strengthen the local search capability and foster population diversity.Secondly,a position update model,incorporating a spiral mechanism,is designed to improve the algorithm’s global exploration and convergence speed.Finally,a dynamic balancing factor,guided by fitness values,adjusts the search process to balance exploration and exploitation effectively.The performance of SPPE is first validated on CEC2013 benchmark functions,where it demonstrates excellent convergence speed and superior optimization results compared to several state-of-the-art metaheuristic algorithms.To further verify its practical applicability,SPPE is combined with the K-means algorithm for data clustering and tested on seven datasets.Experimental results show that SPPE-K-means improves clustering accuracy,reduces dependency on initialization,and outperforms other clustering approaches.This study highlights SPPE’s robustness and efficiency in solving both optimization and clustering challenges,making it a promising tool for complex data analysis tasks.
关 键 词:Phasmatodea population evolution algorithm data clustering meta-heuristic algorithm
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49