检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiaoyan Shao Jiaqi Han Lingling Li Xuezhuan Zhao Jingjing Yan
机构地区:[1]School of Computer Science,Zhengzhou University of Aeronautics,Zhengzhou,450046,China [2]National Key Laboratory of Air-Based Information Perception and Fusion,Luoyang,471000,China [3]Chongqing Research Institute of Harbin Institute of Technology,Chongqing,401151,China [4]Aerospace Electronic Information Technology Henan Collaborative Innovation Center,Zhengzhou,401151,China
出 处:《Computers, Materials & Continua》2025年第4期595-617,共23页计算机、材料和连续体(英文)
基 金:funding from the following sources:National Natural Science Foundation of China(U1904119);Research Programs of Henan Science and Technology Department(232102210054);Chongqing Natural Science Foundation(CSTB2023NSCQ-MSX0070);Henan Province Key Research and Development Project(231111212000);Aviation Science Foundation(20230001055002);supported by Henan Center for Outstanding Overseas Scientists(GZS2022011).
摘 要:The primary challenge in weakly supervised semantic segmentation is effectively leveraging weak annotations while minimizing the performance gap compared to fully supervised methods.End-to-end model designs have gained significant attention for improving training efficiency.Most current algorithms rely on Convolutional Neural Networks(CNNs)for feature extraction.Although CNNs are proficient at capturing local features,they often struggle with global context,leading to incomplete and false Class Activation Mapping(CAM).To address these limitations,this work proposes a Contextual Prototype-Based End-to-End Weakly Supervised Semantic Segmentation(CPEWS)model,which improves feature extraction by utilizing the Vision Transformer(ViT).By incorporating its intermediate feature layers to preserve semantic information,this work introduces the Intermediate Supervised Module(ISM)to supervise the final layer’s output,reducing boundary ambiguity and mitigating issues related to incomplete activation.Additionally,the Contextual Prototype Module(CPM)generates class-specific prototypes,while the proposed Prototype Discrimination Loss and Superclass Suppression Loss guide the network’s training,(LPDL)(LSSL)effectively addressing false activation without the need for extra supervision.The CPEWS model proposed in this paper achieves state-of-the-art performance in end-to-end weakly supervised semantic segmentation without additional supervision.The validation set and test set Mean Intersection over Union(MIoU)of PASCAL VOC 2012 dataset achieved 69.8%and 72.6%,respectively.Compared with ToCo(pre trained weight ImageNet-1k),MIoU on the test set is 2.1%higher.In addition,MIoU reached 41.4%on the validation set of the MS COCO 2014 dataset.
关 键 词:End-to-end weakly supervised semantic segmentation vision transformer contextual prototype class activation map
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7