An Explainable Autoencoder-Based Feature Extraction Combined with CNN-LSTM-PSO Model for Improved Predictive Maintenance  

在线阅读下载全文

作  者:Ishaani Priyadarshini 

机构地区:[1]eCornell,Division of Online Learning,Cornell University,Ithaca,NY 14850,USA

出  处:《Computers, Materials & Continua》2025年第4期635-659,共25页计算机、材料和连续体(英文)

摘  要:Predictive maintenance plays a crucial role in preventing equipment failures and minimizing operational downtime in modern industries.However,traditional predictive maintenance methods often face challenges in adapting to diverse industrial environments and ensuring the transparency and fairness of their predictions.This paper presents a novel predictive maintenance framework that integrates deep learning and optimization techniques while addressing key ethical considerations,such as transparency,fairness,and explainability,in artificial intelligence driven decision-making.The framework employs an Autoencoder for feature reduction,a Convolutional Neural Network for pattern recognition,and a Long Short-Term Memory network for temporal analysis.To enhance transparency,the decision-making process of the framework is made interpretable,allowing stakeholders to understand and trust the model’s predictions.Additionally,Particle Swarm Optimization is used to refine hyperparameters for optimal performance and mitigate potential biases in the model.Experiments are conducted on multiple datasets from different industrial scenarios,with performance validated using accuracy,precision,recall,F1-score,and training time metrics.The results demonstrate an impressive accuracy of up to 99.92%and 99.45%across different datasets,highlighting the framework’s effectiveness in enhancing predictive maintenance strategies.Furthermore,the model’s explainability ensures that the decisions can be audited for fairness and accountability,aligning with ethical standards for critical systems.By addressing transparency and reducing potential biases,this framework contributes to the responsible and trustworthy deployment of artificial intelligence in industrial environments,particularly in safety-critical applications.The results underscore its potential for wide application across various industrial contexts,enhancing both performance and ethical decision-making.

关 键 词:Explainability feature reduction predictive maintenance OPTIMIZATION 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象