A Global-Local Parallel Dual-Branch Deep Learning Model with Attention-Enhanced Feature Fusion for Brain Tumor MRI Classification  

在线阅读下载全文

作  者:Zhiyong Li Xinlian Zhou 

机构地区:[1]School of Computer Science and Engineering,Hunan University of Science and Technology,Xiangtan,411100,China

出  处:《Computers, Materials & Continua》2025年第4期739-760,共22页计算机、材料和连续体(英文)

摘  要:Brain tumor classification is crucial for personalized treatment planning.Although deep learning-based Artificial Intelligence(AI)models can automatically analyze tumor images,fine details of small tumor regions may be overlooked during global feature extraction.Therefore,we propose a brain tumor Magnetic Resonance Imaging(MRI)classification model based on a global-local parallel dual-branch structure.The global branch employs ResNet50 with a Multi-Head Self-Attention(MHSA)to capture global contextual information from whole brain images,while the local branch utilizes VGG16 to extract fine-grained features from segmented brain tumor regions.The features from both branches are processed through designed attention-enhanced feature fusion module to filter and integrate important features.Additionally,to address sample imbalance in the dataset,we introduce a category attention block to improve the recognition of minority classes.Experimental results indicate that our method achieved a classification accuracy of 98.04%and a micro-average Area Under the Curve(AUC)of 0.989 in the classification of three types of brain tumors,surpassing several existing pre-trained Convolutional Neural Network(CNN)models.Additionally,feature interpretability analysis validated the effectiveness of the proposed model.This suggests that the method holds significant potential for brain tumor image classification.

关 键 词:Deep learning attention mechanism feature fusion dual-branch structure brain tumor MRI classification 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象