检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jia Liu Hang Gu Fangmei Liu Hao Chen Zuhe Li Gang Xu Qidong Liu Wei Wang
机构地区:[1]School of Computer Science and Technology,Zhengzhou University of Light Industry,Zhengzhou,450002,China [2]Department of Computing,Xi’an Jiaotong-Liverpool University,Suzhou,215123,China
出 处:《Computers, Materials & Continua》2025年第4期803-822,共20页计算机、材料和连续体(英文)
基 金:supported by Henan Province Key R&D Project(241111210400);Henan Provincial Science and Technology Research Project(242102211007 and 242102211020);Jiangsu Science and Technology Programme-General Programme(BK20221260);Science and Technology Innovation Project of Zhengzhou University of Light Industry(23XNKJTD0205).
摘 要:In recent years,convolutional neural networks(CNN)and Transformer architectures have made significant progress in the field of remote sensing(RS)change detection(CD).Most of the existing methods directly stack multiple layers of Transformer blocks,which achieves considerable improvement in capturing variations,but at a rather high computational cost.We propose a channel-Efficient Change Detection Network(CE-CDNet)to address the problems of high computational cost and imbalanced detection accuracy in remote sensing building change detection.The adaptive multi-scale feature fusion module(CAMSF)and lightweight Transformer decoder(LTD)are introduced to improve the change detection effect.The CAMSF module can adaptively fuse multi-scale features to improve the model’s ability to detect building changes in complex scenes.In addition,the LTD module reduces computational costs and maintains high detection accuracy through an optimized self-attention mechanism and dimensionality reduction operation.Experimental test results on three commonly used remote sensing building change detection data sets show that CE-CDNet can reduce a certain amount of computational overhead while maintaining detection accuracy comparable to existing mainstream models,showing good performance advantages.
关 键 词:Remote sensing change detection attention mechanism channel optimization multi-scale feature fusion
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49