A Generative Image Steganography Based on Disentangled Attribute Feature Transformation and Invertible Mapping Rule  

在线阅读下载全文

作  者:Xiang Zhang Shenyan Han Wenbin Huang Daoyong Fu 

机构地区:[1]School of Computer Science,Nanjing University of Information Science and Technology,Nanjing,210044,China [2]Engineering Research Center of Digital Forensics,Nanjing University of Information Science and Technology,Ministry of Education,Nanjing,210044,China

出  处:《Computers, Materials & Continua》2025年第4期1149-1171,共23页计算机、材料和连续体(英文)

基  金:supported in part by the National Natural Science Foundation of China(Nos.62202234,62401270);the China Postdoctoral Science Foundation(No.2023M741778);the Natural Science Foundation of Jiangsu Province(Nos.BK20240706,BK20240694).

摘  要:Generative image steganography is a technique that directly generates stego images from secret infor-mation.Unlike traditional methods,it theoretically resists steganalysis because there is no cover image.Currently,the existing generative image steganography methods generally have good steganography performance,but there is still potential room for enhancing both the quality of stego images and the accuracy of secret information extraction.Therefore,this paper proposes a generative image steganography algorithm based on attribute feature transformation and invertible mapping rule.Firstly,the reference image is disentangled by a content and an attribute encoder to obtain content features and attribute features,respectively.Then,a mean mapping rule is introduced to map the binary secret information into a noise vector,conforming to the distribution of attribute features.This noise vector is input into the generator to produce the attribute transformed stego image with the content feature of the reference image.Additionally,we design an adversarial loss,a reconstruction loss,and an image diversity loss to train the proposed model.Experimental results demonstrate that the stego images generated by the proposed method are of high quality,with an average extraction accuracy of 99.4%for the hidden information.Furthermore,since the stego image has a uniform distribution similar to the attribute-transformed image without secret information,it effectively resists both subjective and objective steganalysis.

关 键 词:Image information hiding generative information hiding disentangled attribute feature transformation invertible mapping rule steganalysis resistance 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象