Blockchain-Enabled Edge Computing Techniques for Advanced Video Surveillance in Autonomous Vehicles  

在线阅读下载全文

作  者:Mohammad Tabrez Quasim Khair Ul Nisa 

机构地区:[1]Department of Computer Science and Artificial Intelligence,College of Computing and Information Technology,University of Bisha,Bisha,P.O.Box 551,Saudi Arabia

出  处:《Computers, Materials & Continua》2025年第4期1239-1255,共17页计算机、材料和连续体(英文)

摘  要:The blockchain-based audiovisual transmission systems were built to create a distributed and flexible smart transport system(STS).This system lets customers,video creators,and service providers directly connect with each other.Blockchain-based STS devices need a lot of computer power to change different video feed quality and forms into different versions and structures that meet the needs of different users.On the other hand,existing blockchains can’t support live streaming because they take too long to process and don’t have enough computer power.Large amounts of video data being sent and analyzed put too much stress on networks for vehicles.A video surveillance method is suggested in this paper to improve the performance of the blockchain system’s data and lower the latency across the multiple access edge computing(MEC)system.The integration of MEC and blockchain for video surveillance in autonomous vehicles(IMEC-BVS)framework has been proposed.To deal with this problem,the joint optimization problem is shown using the actor-critical asynchronous advantage(ACAA)method and deep reinforcement training as a Markov Choice Progression(MCP).Simulation results show that the suggested method quickly converges and improves the performance of MEC and blockchain when used together for video surveillance in self-driving cars compared to other methods.

关 键 词:Blockchain multiple access edge computing video surveillance autonomous vehicles 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象