检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Shichun ZHANG Junjun GUO Wei LIU Jibo LI Zhongguo GUAN
机构地区:[1]State Key Laboratory of Disaster Reduction in Civil Engineering,Tongji University,Shanghai 200092,China [2]China Highway Engineering Consulting Co.,Ltd.,Beijing 100089,China
出 处:《Frontiers of Structural and Civil Engineering》2025年第3期341-357,共17页结构与土木工程前沿(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant No.52278527).
摘 要:This study focuses on a reasonable lateral isolation system for a typical long-span single-tower cable-stayed bridge with a significantly asymmetric span arrangement that is particularly suitable for mountainous areas. Based on the Jinsha River Bridge, the significant structural asymmetry and its effects on structural seismic responses were analyzed. The significantly asymmetric characteristics could result in complex dynamic behavior in seismic conditions and the lateral seismic responses of the structure are governed by multiple modes. A multilinear model composed of an ideal elastoplastic element and a multilinear elastic element was used to simulate different hysteresis, and a parametric analysis was conducted to investigate the appropriate damping hysteresis for the lateral seismic isolation of such a bridge. It shows that the inverted S-shaped hysteresis has relatively smaller secant stiffness and could help to balance the great difference in the lateral stiffness of the tower/piers. Thus, the inverted S-shaped hysteresis could lead to more efficient damping effects and less base shear forces of the tower/piers. A correlation between the reasonable yield forces of the dampers in the lateral isolation system, determined through an influence matrix-based method, and the shear forces of the corresponding bearings in the lateral fixed system was also observed. Moreover, the influence of geological conditions including different terrain and site conditions on the reasonable lateral isolation system was further investigated. It suggests to use dampers at all tower/pier locations when the side span crosses a steep valley slope, while a lateral isolation system without using dampers at the auxiliary piers could be employed when the side span crosses a gentle valley slope. Soft sites require larger damper yield forces and cause greater seismic responses compared to hard sites.
关 键 词:single-tower cable-stayed bridge lateral isolation system multilinear model influence matrix geological conditions
分 类 号:U448.27[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49