检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Shao-Yuan LI Shi-Ji ZHAO Zheng-Tao CAO Sheng-Jun HUANG Songcan CHEN
出 处:《Frontiers of Computer Science》2025年第3期25-36,共12页计算机科学前沿(英文版)
基 金:supported by the National Key R&D Program of China(2022ZD0114801);the National Natural Science Foundation of China(Grant No.61906089);the Jiangsu Province Basic Research Program(BK20190408).
摘 要:Unsupervised Domain Adaptation(UDA)intends to achieve excellent results by transferring knowledge from labeled source domains to unlabeled target domains in which the data or label distribution changes.Previous UDA methods have acquired great success when labels in the source domain are pure.However,even the acquisition of scare clean labels in the source domain needs plenty of costs as well.In the presence of label noise in the source domain,the traditional UDA methods will be seriously degraded as they do not deal with the label noise.In this paper,we propose an approach named Robust Self-training with Label Refinement(RSLR)to address the above issue.RSLR adopts the self-training framework by maintaining a Labeling Network(LNet)on the source domain,which is used to provide confident pseudo-labels to target samples,and a Target-specific Network(TNet)trained by using the pseudo-labeled samples.To combat the effect of label noise,LNet progressively distinguishes and refines the mislabeled source samples.In combination with class rebalancing to combat the label distribution shift issue,RSLR achieves effective performance on extensive benchmark datasets.
关 键 词:unsupervised domain adaptation label noise label distribution shift SELF-TRAINING class rebalancing
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49