Robust domain adaptation with noisy and shifted label distribution  

在线阅读下载全文

作  者:Shao-Yuan LI Shi-Ji ZHAO Zheng-Tao CAO Sheng-Jun HUANG Songcan CHEN 

机构地区:[1]MIIT Key Laboratory of Pattern Analysis and Machine Intelligence,College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China

出  处:《Frontiers of Computer Science》2025年第3期25-36,共12页计算机科学前沿(英文版)

基  金:supported by the National Key R&D Program of China(2022ZD0114801);the National Natural Science Foundation of China(Grant No.61906089);the Jiangsu Province Basic Research Program(BK20190408).

摘  要:Unsupervised Domain Adaptation(UDA)intends to achieve excellent results by transferring knowledge from labeled source domains to unlabeled target domains in which the data or label distribution changes.Previous UDA methods have acquired great success when labels in the source domain are pure.However,even the acquisition of scare clean labels in the source domain needs plenty of costs as well.In the presence of label noise in the source domain,the traditional UDA methods will be seriously degraded as they do not deal with the label noise.In this paper,we propose an approach named Robust Self-training with Label Refinement(RSLR)to address the above issue.RSLR adopts the self-training framework by maintaining a Labeling Network(LNet)on the source domain,which is used to provide confident pseudo-labels to target samples,and a Target-specific Network(TNet)trained by using the pseudo-labeled samples.To combat the effect of label noise,LNet progressively distinguishes and refines the mislabeled source samples.In combination with class rebalancing to combat the label distribution shift issue,RSLR achieves effective performance on extensive benchmark datasets.

关 键 词:unsupervised domain adaptation label noise label distribution shift SELF-TRAINING class rebalancing 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象