Effect of tensile loading on irradiation creep behavior of graphite crystal:a molecular dynamics study  

在线阅读下载全文

作  者:Dong-Bo Xiong D.K.L.Tsang 

机构地区:[1]Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China [2]University of Chinese Academy of Sciences,Beijing 100049,China

出  处:《Nuclear Science and Techniques》2025年第5期57-69,共13页核技术(英文)

基  金:supported the Science and Technology Commission of Shanghai Municipality(No.21DZ2206900)。

摘  要:The operational lifespan of nuclear graphite is significantly affected by irradiation creep,yet the microstructural mechanism underlying this creep phenomenon remains unclear.Some theories attempt to link microstructural evolution with creep behavior,but the rapid migration rate of defects under irradiation and loading makes it difficult to capture the specific evolution process experimentally,resulting in a lack of direct structural evidence.Therefore,in this study,molecular dynamics simulations are employed to investigate the irradiation behavior and microstructural migration under external loading.The aim is to provide microstructural evidence for theories such as the dislocation pinning-unpinning and crystal yielding.The results demonstrate that high tensile loads can increase the potential energy and reduce threshold displacement energy of graphite crystals.Consequently,displacement damage probability and creep rate increase,which is not considered in previous theories.Meanwhile,different creep mechanisms are observed at different damage states and applied loads.In low-dose damage states dominated by interstitials and vacancies,the pinning-unpinning process at basal plane may be caused by a defect diffusion mode.Under high stress levels,direct breaking of pinning structures occurs,leading to rapid migration of basal planes,demonstrating the microstructural evolution process of irradiated crystal yielding and plastic flow.In high-dose damage states characterized significantly by amorphous components,short-range atomic diffusion can become the dominant creep mechanism,and diffusion along the c-axis of graphite crystals is no longer constrained.These findings provide a crucial reference for understanding the irradiation and creep behavior of nuclear graphite in reactors.

关 键 词:Nuclear graphite Irradiation creep Migration mechanism Potential analysis 

分 类 号:TL341[核科学技术—核技术及应用]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象