检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiaoping Xu Ting Zhang Zhimin Mu Yongli Ma Mingyan Liu
机构地区:[1]College of Basic Science,Tianjin Agricultural University,Tianjin 300392,China [2]School of Chemical Engineering and Technology,Tianjin University,Tianjin 300350,China [3]State Key Laboratory of Chemical Engineering,Tianjin University,Tianjin 300350,China
出 处:《Chinese Journal of Chemical Engineering》2025年第2期67-81,共15页中国化学工程学报(英文版)
基 金:supported by the open foundation of State Key Laboratory of Chemical Engineering(SKL-ChE-22B01);the Natural Science Foundation of China(22008169).
摘 要:The dynamics of vapor−liquid−solid(V−L−S)flow boiling in fluidized bed evaporators exhibit inherent complexity and chaotic behavior,hindering accurate prediction of pressure drop signals.To address this challenge,this study proposes an innovative hybrid approach that integrates wavelet neural network(WNN)with chaos analysis.By leveraging the Cross-Correlation(C−C)method,the minimum embedding dimension for phase space reconstruction is systematically calculated and then adopted as the input node configuration for the WNN.Simulation results demonstrate the remarkable effectiveness of this integrated method in predicting pressure drop signals,advancing our understanding of the intricate dynamic phenomena occurring with V−L−S fluidized bed evaporators.Moreover,this study offers a novel perspective on applying advanced data-driven techniques to handle the complexities of multi-phase flow systems and highlights the potential for improved operational prediction and control in industrial settings.
关 键 词:Wavelet neural network forecasting Chaos theory Phase space reconstruction Pressure drop forecasting Fluidized bed evaporator Multi-phase dynamics
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49