检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:闻太祎 梁忠民[1] 赵建飞 胡义明[1] 李彬权[1] 段雅楠 WEN Tai-yi;LIANG Zhong-min;ZHAO Jian-fei;HU Yi-ming;LI Bin-quan;DUAN Ya-nan(College of Hydrology and Water Resources,Hohai University,Nanjing 210098,China;Jiangsu Province Water Conservancy Engineering Sci-tech Consulting Co.,Ltd.,Nanjing 210029,China)
机构地区:[1]河海大学水文水资源学院,江苏南京210098 [2]江苏省水利工程科技咨询股份有限公司,江苏南京210029
出 处:《水电能源科学》2025年第4期1-5,共5页Water Resources and Power
基 金:国家自然科学基金项目(52379007);中央高校基本科研业务费专项资金(B240201164)。
摘 要:针对现有差分形式的新安江模型存在数值求解误差,而该误差受降雨强度影响的问题,设计了理想数值和实际应用两组试验,对比分析了其差分形式(XAJ)和微分形式(ODE-XAJ)的模型模拟精度随降雨强度的变化。结果表明,在理想数值试验中,随着降雨强度的增加,XAJ和ODE-XAJ的数值误差均表现出增大趋势,但ODE-XAJ的数值误差量级更低,可近似忽略;在屯溪流域20场洪水的应用中,XAJ的数值误差与降雨强度具有较强的正相关,ODE-XAJ与XAJ相比,其洪峰、洪量相对误差在大雨强场次洪水中分别降低3.22%、5.90%,确定性系数提升0.03;降雨强度增大会放大差分形式的新安江模型的数值求解误差,进而降低其模拟精度,而微分形式的新安江模型可有效控制数值误差的影响,保证模型模拟精度。The existing finite difference form of the Xin'anjiang Model(XAJ)is subject to numerical solution errors influenced by rainfall intensity.To address this issue,this study designed both idealized numerical experiments and realworld application experiments to comparatively analyze the variations in simulation accuracy between the finite difference form(XAJ)and the differential form(ODE-XAJ)under varying rainfall intensities.The results demonstrate that in idealized numerical experiments,as rainfall intensity increases,both XAJ and ODE-XAJ exhibit growing numerical errors,though the magnitude of errors in ODE-XAJ remains significantly lower and nearly negligible.In applications to 20 flood events in the Tunxi Basin,the numerical errors of XAJ show a strong positive correlation with rainfall intensity.Compared to XAJ,ODE-XAJ reduces the relative errors in peak flow and total flood volume by 3.22%and 5.90%,respectively,during high-intensity rainfall events,while improving the deterministic coefficient by 0.03.These findings indicate that increasing rainfall intensity amplifies numerical solution errors in the finite difference form of the Xin'anjiang Model,thereby reduces its simulation accuracy.In contrast,the differential form(ODE-XAJ)effectively mitigates the impact of numerical errors and ensures simulation accuracy.
关 键 词:降雨强度 数值求解误差 洪水预报 新安江模型 屯溪流域
分 类 号:TV125[水利工程—水文学及水资源] P338[天文地球—水文科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49