检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘俊婧 郑宛露 郭子强 王少荣[1,2,3] LIU Junjing;ZHENG Wanlu;GUO Ziqiang;WANG Shaorong(School of Information Science and Technology,Beijing Forest University,Beijing 100083,China;Engineering Research Center for Forestry-oriented Intelligent Information Processing of National Forestry and Grassland Administration,Beijing 100083,China;Beijing Virtual Simulation and Visualization Engineering Center,Beijing 100871,China)
机构地区:[1]北京林业大学信息学院,北京100083 [2]国家林业草原林业智能信息处理工程技术研究中心,北京100083 [3]北京市虚拟仿真与可视化工程技术研究中心,北京100871
出 处:《浙江大学学报(工学版)》2025年第5期929-937,共9页Journal of Zhejiang University:Engineering Science
摘 要:为了解决行人重识别模型性能对背景环境因素过于依赖的问题,提出多方引导前景增强的行人重识别方法.该方法通过掩码引导增强和自增强策略,提升了模型对行人前景的关注,同时保留一定的背景信息,有效减轻了对背景信息的依赖,增强了模型的泛化能力.在骨干网络中引入瓶颈优化模块,利用空洞卷积,在保持原有参数规模的前提下,有效增大了模型的感受野,提升了模型的整体性能.实验结果表明,提出的模型在Market1501和DukeMTMC_reID数据集上分别取得了95%和88.3%的Rank-1准确率.验证了多方引导前景增强的行人重识别方法的有效性,通过前景增强并结合一定的背景信息,有效提升了基线模型的性能.A multi-part guided foreground enhancement method for person re-identification was proposed in order to solve the problem that the performance of person re-identification model was overly depend on background environmental factors.The model’s attention to the person’s foreground was enhanced by employing mask-guided enhancement and self-enhancement strategies,while retaining some background information.This effectively reduced the model’s dependence on background information and improved its generalization ability.A bottleneck optimization module was integrated into the backbone network,utilizing dilated convolutions to enlarge the model’s receptive field while maintaining the original parameter scale,thereby improving the overall performance of the model.The experimental results demonstrated that the proposed model achieved Rank-1 accuracies of 95%and 88.3%on the Market1501 and DukeMTMC_reID datasets,respectively.The effectiveness of the multi-part guided foreground enhancement method was verified,which strengthened the foreground while incorporating appropriate background information,and significantly enhanced the performance of the baseline model.
关 键 词:行人重识别 人体解析 背景变化 前景增强 掩码引导增强
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63