高温合金薄壁构件Ar/He大气等离子喷涂单次预热的温度场和应力场数值研究  

A Numerical Study of the Temperature and Stress Fields in a Single Preheating of Atmospheric Plasma Spraying using Ar/He on Thin-Walled Components of Superalloy

在线阅读下载全文

作  者:雷一帆 许宝文 史浩伯 陈子琪 田伟智 高鑫 刘森辉 李成新[1] 李长久[1] LEI Yifan;XU Baowen;SHI Haobo;CHEN Ziqi;TIAN Weizhi;GAO Xin;LIU Senhui;LI Chengxin;LI Changjiu(School of Materials Science and Engineering,State Key Laboratory for Strength and Fracture of Materi als,Institute of Coating and Welding,Xi'an Jiaotong University,Xi'an 710049,China;Beijing Aerospace Star Mechanical&Electrical Equipment Co.,Ltd.,Beijing 100191,China)

机构地区:[1]西安交通大学材料科学与工程学院金属材料强度国家重点实验室,焊接与涂层研究所,西安710049 [2]北京星航机电装备有限公司,北京100191

出  处:《热喷涂技术》2025年第1期98-111,共14页Thermal Spray Technology

基  金:国家重点研发计划(2021YFB4001400);陕西省重点研发计划(S2023-YF-LLRH-QCYK-0201);先进功能涂层技术西安国际合作研究中心、国家自然科学基金联合基金重点项目(NFSC-U2430212)。

摘  要:随着尖端装备轻量化设计趋势的推进,薄壁结构因其高比强度和比刚度,广泛应用于多个领域。然而,薄壁结构具有复杂结构,在大气等离子喷涂过程中容易发生变形,影响装配精度和使用性能。为提高等离子喷涂后薄壁构件的尺寸稳定性和生产效率,本文采用有限元方法构建了大气等离子喷涂单次预热过程的数字孪生模型,讨论了温度场和应力场分布规律,并预测了变形情况。首先,通过实验验证了薄壁构件温度场模型,误差小于5%。随后,针对最长1 450 mm,厚度3 mm的薄壁构件建立了大气等离子喷涂单次预热过程的数字孪生模型,结果表明:薄壁构件的最高温度为89.7℃,在热源移动的前端和两侧存在约50℃的温差,该区域同时也是热应力集中区域。尽管温度分布规律在不同模型中基本一致,但由于喷涂范围和构件结构的差异,最高温度有所不同。中间窗口区域是最大应力集中区域,最高等效应力达到89.1 MPa。数值预测显示,预热过程中的变形呈中间凸起两端下沉的趋势,最大变形量为0.83 mm。随着等离子喷枪的最大热流密度由5×10^(5) W/m^(2)增加到7.5×10^(5) W/m^(2)和10×10^(5) W/m^(2),构件在喷涂预热过程中的最高温度分别增加39%和76%,最大应力增加47%和110%,最大变形量增加39%和88%。但高温合金薄壁构件在单次预热过程中未发生不可逆的塑性变形,降温后变形均恢复。With the advancement of the trend of lightweight design for cutting-edge equipment,thin-walled structures are widely used in many fields due to their high specific strength and specific stiffness.However,thin-walled structures are prone to deformation during atmospheric plasma spraying,affecting assembly accuracy and usability.In order to improve the dimensional stability and productivity of thin-walled components after plasma spraying,this paper constructs a digital twin model of the single spray preheating process using the finite element method,analyses the temperature and stress field distributions,and predicts the deformation.Firstly,the temperature field model of the thin-walled component was experimentally verified with an error of less than 5%.Subsequently,a digital twin model was developed for the single preheating process of atmospheric plasma spraying of thin-walled components,and the results showed that the maximum temperature of the thin-walled components was 89.7℃,and there was a temperature difference of about 50°C at the front and both sides of the heat source movement,which was also the region of thermal stress concentration.Although the temperature distribution pattern is basically the same in different models,the maximum temperature varies due to the difference in spraying range and member structure.The middle window region is the region of maximum stress concentration,and the maximum equivalent stress reaches 89.1 MPa.Numerical prediction shows that the deformation during the preheating process tends to be convex in the middle and sink at both ends,and the maximum deformation is 0.83 mm.As the maximum heat flux density of plasma gun increases from 5×10^(5) W/m^(2) to 7.5×10^(5) W/m^(2) and 10×10^(5) W/m^(2),the maximum temperature of the member during spraying preheating increases by 39%and 76%,respectively.temperature increased by 39%and 76%,maximum stress increased by 47%and 110%,and maximum deformation increased by 39%and 88%,respectively.However,no irreversible plastic deformation of

关 键 词:薄壁结构 等离子喷涂 有限元方法 数字孪生模型 温度分布 应力分析 变形预测 

分 类 号:TG174[金属学及工艺—金属表面处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象