Synergistic effect between nitrogen-doped sites and metal chloride for carbon supported extra-low mercury catalysts in acetylene hydrochlorination  

在线阅读下载全文

作  者:Yiyang Qiu Chong Liu Xueting Meng Yuesen Liu Jiangtao Fan Guojun Lan Ying Li 

机构地区:[1]Institute of Industry Catalysis,Zhejiang University of Technology,Hangzhou 310014,China [2]Fujian Institute of Research on Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China

出  处:《Chinese Journal of Chemical Engineering》2025年第3期145-154,共10页中国化学工程学报(英文版)

基  金:supported by the National Key Research and Development Program of China(2024YFC3907904).

摘  要:Carbon-supported mercury catalysts are extensivelyemployed in calcium carbide-based polyvinyl chloride(PVC)industries,but the usage of mercury-based catalysts can pose an environmental threat due to the release of mercury into the surrounding area during the operation period.In this study,a highly active and stable mercury-based catalyst was developed,utilizing the nitrogen atom of the support as the anchor site to enhance the interaction between active sites(HgCl_(2))and the carbon support(N-AC).Thermal loss rate testing and thermogravimetric analysis results demonstrate that,compared to commercial activated carbon,N-doped carbon can effectively increase the heat stability of HgCl_(2).The obtained mercury-based catalysts(HgCl_(2)/N-AC)exhibit significant catalytic performance,achieving 2.5 times the C2H2 conversion of conventional HgCl_(2)/AC catalysts.Experimental analysis combined with theoretical calculations reveals that,contrary to the Eley-Rideal(ER)mechanism of HgCl_(2)/AC,the HgCl_(2)/N-AC catalyst follows the Langmuir-Hinshelwood(LH)adsorption mechanism.The nitrogen sites and HgCl_(2) on the catalyst enhance the adsorption capabilities of the HCl and C2H2,thereby improving the catalytic performance.Based on the modification of the active center by these solid ligands,the loading amount of HgCl_(2) on the catalyst can be further reduced from the current 6.5%to 3%.Considering the absence of successful industrial applications for mercury-free catalysts,and based on the current annual consumption of commercial mercury chloride catalysts in the PVC industry,the widespread adoption of this technology could annually reduce the usage of chlorine mercury by 500 tons,making a notable contribution to mercury compliance,reduction,and emissions control in China.It also serves as a bridge between mercury-free and low-mercury catalysts.Moreover,this solid ligand technology can assist in the application research of mercury-free catalysts.

关 键 词:Acetylene hydrochlorination Activated carbon Catalyst support Mercury catalyst DFT calculation KINETICS 

分 类 号:TQ426[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象