检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yiyang Qiu Chong Liu Xueting Meng Yuesen Liu Jiangtao Fan Guojun Lan Ying Li
机构地区:[1]Institute of Industry Catalysis,Zhejiang University of Technology,Hangzhou 310014,China [2]Fujian Institute of Research on Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China
出 处:《Chinese Journal of Chemical Engineering》2025年第3期145-154,共10页中国化学工程学报(英文版)
基 金:supported by the National Key Research and Development Program of China(2024YFC3907904).
摘 要:Carbon-supported mercury catalysts are extensivelyemployed in calcium carbide-based polyvinyl chloride(PVC)industries,but the usage of mercury-based catalysts can pose an environmental threat due to the release of mercury into the surrounding area during the operation period.In this study,a highly active and stable mercury-based catalyst was developed,utilizing the nitrogen atom of the support as the anchor site to enhance the interaction between active sites(HgCl_(2))and the carbon support(N-AC).Thermal loss rate testing and thermogravimetric analysis results demonstrate that,compared to commercial activated carbon,N-doped carbon can effectively increase the heat stability of HgCl_(2).The obtained mercury-based catalysts(HgCl_(2)/N-AC)exhibit significant catalytic performance,achieving 2.5 times the C2H2 conversion of conventional HgCl_(2)/AC catalysts.Experimental analysis combined with theoretical calculations reveals that,contrary to the Eley-Rideal(ER)mechanism of HgCl_(2)/AC,the HgCl_(2)/N-AC catalyst follows the Langmuir-Hinshelwood(LH)adsorption mechanism.The nitrogen sites and HgCl_(2) on the catalyst enhance the adsorption capabilities of the HCl and C2H2,thereby improving the catalytic performance.Based on the modification of the active center by these solid ligands,the loading amount of HgCl_(2) on the catalyst can be further reduced from the current 6.5%to 3%.Considering the absence of successful industrial applications for mercury-free catalysts,and based on the current annual consumption of commercial mercury chloride catalysts in the PVC industry,the widespread adoption of this technology could annually reduce the usage of chlorine mercury by 500 tons,making a notable contribution to mercury compliance,reduction,and emissions control in China.It also serves as a bridge between mercury-free and low-mercury catalysts.Moreover,this solid ligand technology can assist in the application research of mercury-free catalysts.
关 键 词:Acetylene hydrochlorination Activated carbon Catalyst support Mercury catalyst DFT calculation KINETICS
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7