检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李诗琦 李晖[1,2] 乔川 朱挺 吴云韬 Li Shiqi;Li Hui;Qiao Chuan;Zhu Ting;Wu Yuntao(School of Computer Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,Hubei,China;Hubei Key Laboratory of Intelligent Robot,Wuhan 430205,Hubei,China)
机构地区:[1]武汉工程大学计算机科学与工程学院,湖北武汉430205 [2]智能机器人湖北省重点实验室,湖北武汉430205
出 处:《光学学报》2025年第1期236-243,共8页Acta Optica Sinica
基 金:国家自然科学基金(51703071,61771353);湖北省自然科学基金创新群体项目(2023AFA035);武汉市知识创新计划-基础研究(2022010801010350);智能机器人湖北省重点实验室(HBIRL202203);教育部数码激光成像与显示工程研究中心开放课题(SDGC2134);信息探测与处理山西省重点实验室开放基金(2023-001);武汉工程大学研究生创新基金(CX2023298,CX2023299)。
摘 要:传统的液晶微透镜阵列(LC-MLA)设计方法大多采用顺序范式。该范式因设计值与实际值的偏差,难以逼近最优解,易导致LC-MLA的透过率偏低和光束聚焦能力不足,进而影响光谱重构的质量。为解决该问题,提出了一种基于深度学习的液晶器件反向设计网络(LCDE-IDN),用于优化高光谱重构系统中的LC-MLA。实验结果表明,相较于传统经验设计的LC-MLA,采用LCDE-IDN设计的LC-MLA的光强均匀性误差约为4.5%,透过率平均提升了3.1%,结果凸显了优化后的LC-MLA具有更高的透过率和增强的光束聚焦能力。高光谱重构系统的重构精度也得到较大幅度的提升,重构出的光谱图像的峰值信噪比平均提升了5.7%。Objective Liquid crystal microlens arrays(LC-MLAs)are widely used in spectral reconstruction,optical field imaging,and 3D reconstruction.However,current LC-MLA optimization approaches predominantly focus on improving the structural design and material properties to enhance optical performance.These methods typically follow a sequential paradigm when selecting the structural parameters of LC-MLAs,making it difficult to reach optimal solutions due to the discrepancies between designed and actual values.In addition,the lengthy iterative process and inefficiencies often result in low transmittance and insufficient beam-focusing abilities,compromising the quality of spectral reconstruction.To address these limitations,we propose a deep learning-based liquid crystal device inverse design network(LCDE-IDN)to optimize LC-MLA for hyperspectral reconstruction systems.Experimental results indicate that the LCDE-IDN method significantly enhances the transmittance and beam-focusing ability of LC-MLAs,thus improving the accuracy of spectral reconstruction.This provides an efficient and effective way to select optimal parameters for LC-MLA design.Methods In this paper,we propose the LCDE-IDN method,which integrates deep learning techniques with the physical characteristics of LC-MLAs to optimize structural parameters for hyperspectral reconstruction.The LCDE-IDN framework leverages a fully connected neural network and incorporates a pairwise learning strategy that combines a forward design network with an inverse design network.This approach enables a more effective capture of global features and nonlinear relationships between device structural parameters and the resulting spectral curves.Unlike traditional methods,the inverse design network does not directly learn from the original dataset;instead,it derives its network parameters from the pre-trained forward design network.This reduces the risk of overfitting and enhances accuracy,while also avoiding issues related to the non-uniqueness of spectral curve mappings to device p
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222