检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiaofei Liu Pei Zhang Hua Xie Xuegang Lu Xiangyu Wu Zhao Liu
机构地区:[1]School of Electrical Engineering,Beijing Jiaotong University,Beijing 100044,China [2]School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China [3]Yunnan Electric Power Dispatching and Control Center,Kunming 650011,China
出 处:《Journal of Modern Power Systems and Clean Energy》2025年第1期215-227,共13页现代电力系统与清洁能源学报(英文)
基 金:supported by China Southern Power Grid Co.,Ltd.Yunnan Electric Power Dispatching Control Center(Cyber-physical-based“Source-network-load-storage”Coordinated Dispatch and Control Technologies and Application System Development,sub-project YNKJXM20222463)。
摘 要:The high proportion of renewable energy integration and the dynamic changes in grid topology necessitate the enhancement of voltage/var control(VVC)to manage voltage fluctuations more rapidly.Traditional model-based control algorithms are becoming increasingly incompetent for VVC due to their high model dependence and slow online computation speed.To alleviate these issues,this paper introduces a graph attention network(GAT)based deep reinforcement learning for VVC of topologically variable power system.Firstly,combining the physical information of the actual power grid,a physics-informed GAT is proposed and embedded into the proximal policy optimization(PPO)algorithm.The GAT-PPO algorithm can capture topological and spatial correlations among the node features to tackle topology changes.To address the slow training,the Relief F-S algorithm identifies critical state variables,significantly reducing the dimensionality of state space.Then,the training samples retained in the experience buffer are designed to mitigate the sparse reward issue.Finally,the validation on the modified IEEE 39-bus system and an actual power grid demonstrates superior performance of the proposed algorithm compared with state-of-the-art algorithms,including PPO algorithm and twin delayed deep deterministic policy gradient(TD3)algorithm.The proposed algorithm exhibits enhanced convergence during training,faster solution speed,and improved VVC performance,even in scenarios involving grid topology changes and increased renewable energy integration.Meanwhile,in the adopted cases,the network loss is reduced by 6.9%,10.8%,and 7.7%,respectively,demonstrating favorable economic outcomes.
关 键 词:Voltage/var control grid topology renewable energy graph attention network deep reinforcement learning
分 类 号:TM73[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49