Graph Attention Network Based Deep Reinforcement Learning for Voltage/var Control of Topologically Variable Power System  

在线阅读下载全文

作  者:Xiaofei Liu Pei Zhang Hua Xie Xuegang Lu Xiangyu Wu Zhao Liu 

机构地区:[1]School of Electrical Engineering,Beijing Jiaotong University,Beijing 100044,China [2]School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China [3]Yunnan Electric Power Dispatching and Control Center,Kunming 650011,China

出  处:《Journal of Modern Power Systems and Clean Energy》2025年第1期215-227,共13页现代电力系统与清洁能源学报(英文)

基  金:supported by China Southern Power Grid Co.,Ltd.Yunnan Electric Power Dispatching Control Center(Cyber-physical-based“Source-network-load-storage”Coordinated Dispatch and Control Technologies and Application System Development,sub-project YNKJXM20222463)。

摘  要:The high proportion of renewable energy integration and the dynamic changes in grid topology necessitate the enhancement of voltage/var control(VVC)to manage voltage fluctuations more rapidly.Traditional model-based control algorithms are becoming increasingly incompetent for VVC due to their high model dependence and slow online computation speed.To alleviate these issues,this paper introduces a graph attention network(GAT)based deep reinforcement learning for VVC of topologically variable power system.Firstly,combining the physical information of the actual power grid,a physics-informed GAT is proposed and embedded into the proximal policy optimization(PPO)algorithm.The GAT-PPO algorithm can capture topological and spatial correlations among the node features to tackle topology changes.To address the slow training,the Relief F-S algorithm identifies critical state variables,significantly reducing the dimensionality of state space.Then,the training samples retained in the experience buffer are designed to mitigate the sparse reward issue.Finally,the validation on the modified IEEE 39-bus system and an actual power grid demonstrates superior performance of the proposed algorithm compared with state-of-the-art algorithms,including PPO algorithm and twin delayed deep deterministic policy gradient(TD3)algorithm.The proposed algorithm exhibits enhanced convergence during training,faster solution speed,and improved VVC performance,even in scenarios involving grid topology changes and increased renewable energy integration.Meanwhile,in the adopted cases,the network loss is reduced by 6.9%,10.8%,and 7.7%,respectively,demonstrating favorable economic outcomes.

关 键 词:Voltage/var control grid topology renewable energy graph attention network deep reinforcement learning 

分 类 号:TM73[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象