检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张文美 郭晓凯 许太林 郭广生[1] 汪夏燕[1] ZHANG Wen-Mei;GUO Xiao-Kai;XU Tai-Lin;GUO Guang-Sheng;WANG Xia-Yan(Beijing Key Laboratory for Green Catalysis and Separation,Center of Excellence for Environmental Safety and Biological Effects,Department of Chemistry,College of Chemistry and Life Science,Beijing University of Technology,Beijing 100124,China;The Institute for Advanced Study(IAS),Shenzhen University,Shenzhen 518000,China)
机构地区:[1]北京工业大学化学与生命科学学院化学系,环境安全与生物效应卓越中心,北京市绿色催化与分离重点实验室,北京100124 [2]深圳大学高等研究院,深圳518000
出 处:《分析化学》2025年第3期338-345,共8页Chinese Journal of Analytical Chemistry
基 金:国家自然科学基金项目(Nos.22127805,22206008)资助。
摘 要:单细胞代谢物分析能够在小分子水平上揭示细胞间异质性及其分子多样性,尤其是活单细胞代谢物分析能够展示保真度更高的生化信息。本研究建立了基于超声可连续进样的完整单细胞代谢组学质谱分析平台,旨在提升单细胞利用率和质谱检测效率。此平台基于微型化超声模块产生的机械运动实现了长达60 min的细胞悬浮和分散,并且对细胞的完整性和活性影响较小,细胞存活率高于70%。通过比较静置组和超声组的细胞悬浮液密度和质谱检出的单细胞数量,发现超声处理显著降低了细胞沉降速度,提高了单细胞质谱检出单细胞的数量。将此分析平台用于小鼠小脑星形胶质细胞(C8D1A)和小鼠胶质瘤细胞(GL261)的单细胞分析,实现了不同种类细胞的聚类及差异化分析,显示了本方法在细胞异质性分析以及细胞识别中的应用潜力,为单细胞分析提供了新思路及解决方案。Single-cell metabolite analysis at the small molecule level reveals intercellular heterogeneity and molecular diversity,especially living cell metabolite analysis which can provide more accurate biochemical information.In this study,a comprehensive single-cell metabolomics mass spectrometry analysis platform was constructed based on continuous ultrasonic sample introduction,aiming to improve the utilization rate of single cells and the efficiency of mass spectrometry detection.This platform utilized mechanical motion generated by a miniaturized ultrasound module,which minimally affected cell integrity and viability,enabling cell suspension and dispersion for up to 60 min,with cell viability exceeding 70%.By comparing cell suspension densities and the cell number of mass spectrometry detections between static and ultrasound groups,the results showed that the ultrasound treatment significantly reduced cell sedimentation rate and increased single-cell mass spectrometry detection efficiency.Applying this platform to single-cell analysis of cell line of mouse cerebellar astrocytes(C8D1A)and mouse glioma(GL261)cells achieved clustering and differential analysis of different cell types,demonstrating the method’s potential in analyzing cellular heterogeneity and identifying cells.This approach promised to provide new insights and solutions for single-cell analysis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7