检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:向元柱 钟永彦[1] 陈娟[1] 丁士旵 XIANG Yuan-zhu;ZHONG Yong-yan;CHEN Juan;DING Shi-chan(College of Electrical Engineering,Nantong University,Nangtong Jiangsu 226019,China)
出 处:《计算机仿真》2025年第3期134-139,144,共7页Computer Simulation
基 金:国家自然科学基金项目(62273188)。
摘 要:针对暖通空调系统使用单一模型预测精度较低且长期能耗预测需要大量数据的问题,提出了一种基于KD-LSTM(K-means DBSCAN LSTM)的暖通空调短期能耗预测方法。该方法利用K-means和DBSCAN算法,对能耗数据进行聚类分析;并对每一类数据进行异常检测识别,采用KNN(K-nearest neighbors)方法修复异常数据;使用修复数据训练长短期记忆神经网络LSTM预测模型,实现了暖通空调系统能耗数据的短期预测。以某高校图书馆暖通空调系统为研究对象,使用KD-LSTM方法对三种工况下的能耗数据进行了预测,其均方根误差分别下降11.3855kWh、0.8484kWh、0.1505kWh,相关系数达到99.401%、98.267%、96.486%,验证了上述方法的有效性,可进一步优化图书馆暖通空调系统的能耗管控。In view of the low prediction accuracy of a single model for HVAC systems and the need for large amounts of data for long-term energy consumption prediction,a short-term energy consumption prediction method for HVAC systems based on KD-LSTM(K-means DBSCAN LSTM)was proposed.The method utilized K-means and DBSCAN algorithms for clustering analysis of energy consumption data.It performed anomaly detection and identification for each cluster and employs the K-nearest neighbors(KNN)method to repair the abnormal data.The repaired data was then used to train a long short-term memory neural network(LSTM)for short-term energy consumption prediction in HVAC systems.Taking a university library HVAC system as a case study,the KD-LSTM method was applied to predict energy consumption data under three operating conditions.The root mean square errors were reduced by 11.3855 kWh,0.8484 kWh,and 0.1505 kWh,respectively,and the correlation coefficients reached 99.401%,98.267%,and 96.486%.These results validate the effectiveness of the method and demonstrate its potential for optimizing energy consumption management in the library's HVAC system.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7