高危边坡小水电站大坝形变多点位监测仿真  

Monitoring Simulation of Multiple Deformation of Small Hydropower Station with High-Risk Slope

在线阅读下载全文

作  者:陈泽瑞 欧家祥 吴欣 杨尚 CHEN Ze-rui;OU Jia-xiang;WU Xin;YANG Shang(Guizhou Power Grid Co.,Ltd.Electric Power Science Research Institute,Guiyang Guizhou 550002,China)

机构地区:[1]贵州电网有限责任公司电力科学研究院,贵州贵阳550002

出  处:《计算机仿真》2025年第3期155-159,共5页Computer Simulation

基  金:中国南方电网有限责任公司科技项目(GZKJXM20220050)。

摘  要:高危边坡存在地质构造不稳定、岩层变化等情况,地质活动会使得其周边的小水电站大坝出现局部受力,发生微小位移和形变,使得监测结果存在较大误差。为此,引入北斗卫星技术,提出高危边坡小水电站大坝形变多点位监测方法。利用北斗卫星技术设计用于大坝形变多点位监测的形变监测系统,结合北斗卫星对大坝形变实时监测,以提供厘米级甚至亚米级的位置信息,有效采集形变数据,获取其变形与位移规律,为日后水电站大坝维修管理提供精准的依据。研究结果表明,利用该方法开展水电站高危边坡大坝形变多点位监测时,监测精度高、效果好。High-risk slopes are characterized by unstable geological structures and changes in rock strata.These geological activities will cause local stress on the dams of small hydropower stations around them,resulting in small displacement and deformation,which will lead to large errors in monitoring results.Therefore,Beidou satellite technology is introduced to propose a multi-point monitoring method for dam deformation of small hydropower stations on high-risk slopes.A deformation monitoring system for multi-point monitoring of dam deformation is designed by using Beidou satellite technology.Combined with real-time monitoring of dam deformation by Beidou satellite,it can provide centimeter-level or even sub-meter-level position information,effectively collect deformation data,obtain its deformation and displacement laws,and provide an accurate basis for dam maintenance and management of hydropower stations in the future.The research results show that this method has high monitoring accuracy and good effect when multi-point monitoring of dam deformation on high-risk slopes of hydropower stations is carried out.

关 键 词:高危边坡 小水电站 大坝 形变 多点位监测方法 

分 类 号:TV698[水利工程—水利水电工程] TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象