基于Lotka-Volterra模型的贸易市场增长对资本市场效率的影响  

Impact of Trade Market Growth on Capital Market Efficiency Based on the Lotka-Volterra Model

在线阅读下载全文

作  者:夏蕾 顾垚 XIA Lei;GU Yao(School of Finance and Economics,Wanjiang University of Technology,Ma’anshan 243031,China)

机构地区:[1]皖江工学院财经学院,安徽马鞍山243031

出  处:《湖南工程学院学报(社会科学版)》2025年第1期21-27,共7页Journal of Hunan Institute of Engineering(Social Science Edition)

基  金:皖江工学院2019年重点学科项目“国际贸易学”(WGXK19002);皖江工学院2022年质量工程教学研究重点项目“新文科背景下国贸专业英语类课程的应用型教学改革与探索”(zl202207);安徽省教育厅2020年度人文社科重点项目“‘一带一路’沿线国家贸易便利化水平对安徽贸易流量的影响研究”(SK2020A0647)。

摘  要:为了推动资本市场的高效运作,促进我国经济的持续增长,将改进的Lotka-Volterra算法应用于分析贸易市场增长对资本市场效率的影响。通过分数阶累加算子改进传统Lotka-Volterra算法,研究国内和国际市场在资本量和竞争强度变化下的动态演化。仿真结果表明:改进后的模型不仅能够更准确地反映资本市场的变化趋势,其进出口贸易的同比增长率也更接近真实数据;同时,随着贸易市场的增长,资本市场的均衡时间逐步缩短,资源配置效率得以提升。研究表明,利用该改进算法构建的良性竞争系统能够有效促进资本市场的均衡与效率提升,为优化进出口贸易资源配置提供了理论支持。In order to promote the efficient operation of capital market and the sustainable growth of China’s economy,this paper applies the improved Lotka-Volterra algorithm to analyze the impact of trade market growth on capital market efficiency.By improving the traditional Lotka-Volterra algorithm through fractional order accumulation operator,the dynamic evolution of domestic and international markets under the changes of capital quantity and competition intensity is studied.The simulation results show that the improved model can reflect the changing trend of the capital market more accurately,and its year-on-year growth rate of import and export trade is closer to the real data.Meanwhile,with the growth of the trade market,the equilibrium time of the capital market is gradually shortened,and the efficiency of resource allocation is improved.The study shows that the benign competition system constructed with the improved algorithm can effectively promote the equilibrium and efficiency improvement of the capital market,and provide theoretical support for optimizing the resource allocation of import and export trade.

关 键 词:LOTKA-VOLTERRA模型 分数阶累加 资源配置 国际市场 资本市场效率 

分 类 号:F830.9[经济管理—金融学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象