基于改进YOLOv5算法的智能车灯控制研究  

Research on Intelligent Car Lamp Control Based onImproved YOLOv5 Algorithm

在线阅读下载全文

作  者:郑雅伟[1] Zheng Yawei(Shanxi Institute of Economics and Business,Taiyuan Shanxi 030024,China)

机构地区:[1]山西经贸职业学院,山西太原030024

出  处:《山西电子技术》2025年第2期123-126,共4页Shanxi Electronic Technology

摘  要:针对复杂交通环境下的ADB汽车大灯检测挑战,提出了基于改进YOLOv5算法的解决方案。通过对YOLOv5算法进行优化,融合特征融合、核心网络及视野拓展层等先进技术,实现了对车辆行驶环境的精准检测。实验结果表明,改进后的YOLOv5算法在速度、每秒帧数(FPS)和参数量上均表现出显著优势,检测精度得到大幅提升。同时,结合扩展卡尔曼滤波技术,有效预测了目标车灯光源的轨迹,进一步增强了系统的鲁棒性和实用性。不仅为ADB汽车大灯的环境检测提供了新的思路和方法,也为智能车灯控制系统的未来发展奠定了坚实基础,有助于提升道路行驶的安全性和智能化水平。A solution based on the improved YOLOv5 algorithm is proposed to address the challenges of ADB car headlight detection in complex traffic environments.By optimizing the YOLOv5 algorithm and integrating advanced technologies such as feature fusion,core network,and field of view expansion layer,precise detection of vehicle driving environment has been achieved.The experimental results show that the improved YOLOv5 algorithm exhibits significant advantages in speed,frames per second(FPS),and parameter count,resulting in a significant improvement in detection accuracy.At the same time,combined with extended Kalman filtering technology,the trajectory of the target car light source is effectively predicted,further enhancing the robustness and practicality of the system.Not only does it provide new ideas and methods for environmental detection of ADB car headlights,but it also lays a solid foundation for the future development of intelligent headlight control systems,which helps to improve the safety and intelligence level of road driving.

关 键 词:改进YOLOv5算法 ADB汽车大灯 智能车灯控制 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象