检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘伟[1] LIU Wei
机构地区:[1]延长油田股份有限公司吴起采油厂,陕西延安717600
出 处:《化工设计通讯》2025年第4期18-20,共3页Chemical Engineering Design Communications
摘 要:采油井措施增产效果预测对油田高效开发具有重要意义。基于机器学习方法,结合地质储层特征、生产动态数据和措施参数,构建了一种新的增产效果预测模型。以胜利油田为例,采用集成学习技术,融合随机森林和梯度提升树算法,对183口典型采油井的数据进行分析,预测模型的平均相对误差为8.2%,较传统多元线性回归方法提高15.6%的准确率。结果表明,该模型能有效优化方案设计,提高增产效果预测的准确性,为油田精细化管理和高效开发提供了决策支持。The prediction of stimulation effect of production well measures is of great significance to the effi cient development of oil fi eld.Based on machine learning method,a new prediction model of stimulation effect was constructed by combining geological reservoir characteristics,production dynamic data and measure parameters.Taking Shengli Oilfi eld as an example,integrated learning technology,random forest and gradient lift tree algorithm are used to analyze the data of 183 typical production Wells.The average relative error of the prediction model is 8.2%,which is 15.6%higher than the traditional multiple linear regression method.The results show that the model can effectively optimize the scheme design,improve the accuracy of production stimulation prediction,and provide decision support for fi ne management and effi cient development of oil fi elds.
分 类 号:TE357[石油与天然气工程—油气田开发工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171