检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Civil Engineering and Transportation,South China University of Technology,Guangzhou,510641,China [2]Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology,South China University of Technology,Guangzhou,511442,China
出 处:《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》2025年第3期226-237,共12页浙江大学学报(英文版)A辑(应用物理与工程)
基 金:supported by the National Natural Science Foundation of China(No.41827807);the Foundation of the Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology(No.2021B1212040003),China.
摘 要:Accurately forecasting the operational performance of a tunnel boring machine(TBM)in advance is useful for making timely adjustments to boring parameters,thereby enhancing overall boring efficiency.In this study,we used the Informer model to predict a critical performance parameter of the TBM,namely thrust.Leveraging data from the Guangzhou Metro Line 22 project on the big data platform in China,the model’s performance was validated,while data from Line 18 were used to assess its generalization capability.Results revealed that the Informer model surpasses random forest(RF),extreme gradient boosting(XGB),support vector regression(SVR),k-nearest neighbors(KNN),back propagation(BP),and long short-term memory(LSTM)models in both prediction accuracy and generalization performance.In addition,the optimal input lengths for maximizing accuracy in the single-time-step output model are within the range of 8–24,while for the multiple-time-step output model,the optimal input length is 8.Furthermore,the last predicted value in the case of multiple-time-step outputs showed the highest accuracy.It was also found that relaxation of the Pearson analysis method metrics to 0.95 improved the performance of the model.Finally,the prediction results were most affected by earth pressure,rotation speed,torque,boring speed,and the surrounding rock grade.The model can provide useful guidance for constructors when adjusting TBM operation parameters.
关 键 词:Boring machine performance Informer model Deep learning Thrust force
分 类 号:U455.43[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170