检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:秦泗凤[1,2] 马存多 文龙 Qin Si-feng;Ma Cun-duo;Wen Long(Key Laboratory for Prediction and Control on Complicated Structure System of Education Department of Liaoning Province,Dalian University,Dalian 116622,China;School of Architectural Engineering,Dalian University,Dalian 116622,China)
机构地区:[1]大连大学辽宁省复杂结构系统灾害预测与防治重点实验室,辽宁大连116622 [2]大连大学建筑工程学院,辽宁大连116622
出 处:《工程抗震与加固改造》2025年第2期140-148,共9页Earthquake Resistant Engineering and Retrofitting
基 金:辽宁省复杂结构系统灾害预测与防治重点实验室开放基金项目(DLSZD2024[003])。
摘 要:我国经济的迅速增长和政府的有效协调以及先进的技术和专业知识,为桥梁在震后初期快速恢复提供了强有力的支持,相较于三角型恢复函数,直线型和指数型恢复函数更能适合桥梁震后的恢复动态,而直线型恢复函数未考虑恢复过程中的非线性因素,指数型恢复函数初始恢复速率过高,无法准确地评估桥梁的抗震韧性,针对直线型和指数型恢复函数的不足,提出了一种综合型恢复函数并对其进行验证。首先,以一座独柱式大跨度混凝土高墩矮塔斜拉桥为工程背景,通过云图法获得桥梁构件的易损性曲线,采用一阶界限法来建立桥梁系统的易损性曲线,并通过该曲线来计算桥梁的破坏概率,并计算桥梁震后功能损失和震后恢复时间;其次,基于直线型、指数型和综合型恢复函数评估桥梁的抗震韧性并验证综合型恢复函数的适用性;最后,基于综合型恢复函数研究不同延迟恢复时间对桥梁抗震韧性的影响。结果表明:基于综合型恢复函数的抗震韧性评估结果属于合理范围,综合型恢复函数既考虑了桥梁震后恢复过程中的非线性因素,又较为合理地模拟桥梁震后恢复过程,具有一定的适用性;评估桥梁抗震韧性时,地震强度较低且延迟恢复时间较短时,可忽略延迟恢复时间的影响。China's rapid economic growth,effective governmental coordination,along with advanced technology and expertise,have provided strong support for the swift initial recovery of bridges post-earthquake.Compared to the triangular recovery function,linear and exponential recovery functions are better suited to capture the dynamics of bridge recovery after earthquakes,the linear recovery function does not consider the initial recovery rate,cannot accurately assess the seismic toughness of the bridge,for the insufficiency of linear and exponential recovery function,a comprehensive recovery function is put forward and is verified.First of all,in the context of an individual-column large-span concrete high-pier low-tower cable-stayed bridge,the vulnerability curves of bridge components are obtained using the cloud map method.The vulnerability curve of the bridge system is established using the first-order boundary method.Through this curve,the probability of bridge damage is calculated,along with the estimation of bridge function loss and post-earthquake recovery time.Secondly,the seismic toughness of the bridge is evaluated based on the linear,exponential and integrated recovery function,and then the applicability of the integrated recovery function is verified.Finally,the influence of different delayed repair times on the seismic toughness of the bridge is studied based on the integrated recovery function.The results show that the seismic toughness assessment results based on the comprehensive recovery function belong to the reasonable range.The comprehensive recovery function not only considers the non-linear factors in the post-earthquake recovery process,but also simulates the bridge recovery process reasonably,which has certain applicability;when assessing the seismic toughness of a bridge,the influence of the delayed recovery time can be ignored when the earthquake strength is low and the delayed recovery time is short.
关 键 词:抗震韧性 恢复函数 地震易损性 功能损失 恢复时间
分 类 号:U448.2[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249