检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王少东 王超明 WANG Shaodong;WANG Chaoming
机构地区:[1]浙商银行博士后科研工作站 [2]浙江大学工商管理博士后科研流动站 [3]浙商银行
出 处:《新金融》2025年第4期48-58,共11页New Finance
摘 要:随着大模型技术的飞速发展,生成式AI在众多领域展现出了巨大的应用潜力与价值,特别是数据密集和人力密集的银行业。本文深入探讨生成式AI的技术背景及其在银行业的应用现状、实施路径以及挑战与应对策略,旨在从技术和应用角度,为生成式AI在银行业落地提供框架性的建议和指引。首先,介绍了生成式AI技术的发展背景,并分析了其在银行业中的具体应用场景和价值;其次,深入调研了目前市面上的金融行业大模型,并讨论了大模型应用的五大技术要素;再次,在实施层面,提出了面向银行业的生成式AI应用架构,以及银行推进应用落地的实施路径;最后,分析了银行业在应用生成式AI过程中面临的挑战,并针对性地提出了发展建议。With the rapid advancement of large language model(LLM) technology,Generative AI(GenAI) has shown tremendous potential in numerous fields,particularly in the data-intensive and labor-intensive banking industry.This paper delves into the technical background of Generative AI and its current application status,implementation path,as well as challenges and coping strategies in the banking sector,aiming to provide framework suggestions and guidance for the adoption of GenAI from both technical and application perspectives.Firstly,the paper introduces the background of generative AI technology and analyzes its specific application scenarios and value in the banking industry.Secondly,the paper thoroughly investigates the financial LLMs currently available and discusses five key technical elements for their implementation.On the implementation front,the paper proposes a GenAI application architecture for banking,as well as implementation pathways for banks to promote GenAI adoption.Finally,the paper analyzes the challenges faced by the banking industry in applying GenAI,and offers corresponding development suggestions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7