基于变模态分解的超声成像噪声自动过滤技术  

Ultrasonic imaging noise automatic filtering technology based on variable mode decomposition

在线阅读下载全文

作  者:张娟 戴学宇 ZHANG Juan;DAI Xueyu(Zhangjiakou University Affiliated People’sHospital(Zhangjiakou First Hospital),Zhangjiakou 075000,China)

机构地区:[1]张家口学院附属人民医院(张家口市第一医院),河北张家口075000

出  处:《电子设计工程》2025年第9期149-153,162,共6页Electronic Design Engineering

基  金:张家口市卫生健康生物医疗专项课题(2221069D)。

摘  要:针对超声成像过程中回波信号的非线性、非平稳性以及干扰突变特性,从而导致超声成像质量较差这一问题,提出基于变模态分解的超声成像噪声自动过滤技术。通过超声成像原理,分析其成像回波噪声的形成机理以及超声成像的噪声类别;依据分析结果,采用混合变模态分解算法分解超声回波信号,获取信号分量和包含噪声分量;通过奇异值分解处理回波信号分量并重构,将重构后的信号线性相加,获取降噪后的超声回波信号。测试结果显示,通过文中技术分解超声回波信号,获取具有明显频率和振幅差异的信号分量。重构去噪后的超声回波信号有效过滤了噪声,完好保留了基波,且回波完整性良好,证明该技术能有效处理超声成像噪声,保证高质量成像。Aiming at the nonlinearity,non-stationarity and sudden change of interference of echo signal in the process of ultrasonic imaging,which leads to poor ultrasonic imaging quality,an automatic filtering technology of ultrasonic imaging noise based on variable mode decomposition is proposed.Based on the principle of ultrasonic imaging,the formation mechanism of imaging echo noise and the noise categories of ultrasonic imaging are analyzed.According to the analysis results,the ultrasonic echo signal is decomposed by using the mixed variable mode decomposition algorithm to obtain the signal component and the component containing noise.The processed echo signal components are decomposed by singular value and reconstructed,and the reconstructed signals are linearly added to obtain the denoised ultrasonic echo signal.The test results show that the ultrasonic echo signal is decomposed by the technology in this paper,and the signal components with obvious frequency and amplitude differences are obtained.The reconstructed ultrasonic echo signal effectively filters the noise,keeps the fundamental wave intact,and the echo integrity is good.It is proved that this technology can effectively deal with ultrasonic imaging noise and ensure high quality imaging.

关 键 词:变模态分解 超声成像 噪声自动过滤 超声回波信号分解 信号分量重构 线性相加 

分 类 号:TN911.4[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象