基于三角混沌映射和压缩感知的交通图像加密方案  

Traffic image encryption scheme based on triangular chaotic map and compressive sensing

在线阅读下载全文

作  者:杜渐 李飞[1,2] 戴明 黄乐金 刘艳[1,2] 兰昱 DU Jian;LI Fei;DAI Ming;HUANG Lejin;LIU Yan;LAN Yu(Transport Information Security Center Co.,Ltd.,Beijing 100011,China;China Transport Telecommunications&Information Center,Beijing 100011,China)

机构地区:[1]交通运输信息安全中心有限公司,北京100011 [2]中国交通通信信息中心,北京100011

出  处:《电子设计工程》2025年第9期154-162,共9页Electronic Design Engineering

摘  要:在智慧交通中,图像信息能为车辆、道路及周边建筑提供智能、精准的认知服务。基于隐私图像安全传输的目的,结合二维(Two-Dimensional,2-D)三角混沌映射(Triangular Chaotic Map,TCM)和压缩感知(Compressive Sensing,CS)设计一种交通图像加密方案。具体来说,设计新的2-D混沌映射,用于压缩测量和加密操作。对采集的交通图像,通过小波包稀疏化和2-D CS获得压缩图像。引入分形排序矩阵技术扰乱压缩图像的像素位置和采用双向扩散更改其像素值,从而消除明文图像固有统计特性。实验结果表明,新混沌映射具有稳定复杂的混沌特性,并且加密方案表现出良好的安全性和重建性能,密文图像信息熵在7.99以上,解密图像PSNR在34 dB以上。In intelligent transportation,image information enables intelligent and precise cognitive services for vehicles,roads and surrounding buildings.With the purpose of secure transmission of private images,a traffic image encryption scheme is designed by combining Two-Dimensional(2-D)Triangular Chaotic Map(TCM)and Compressive Sensing(CS).Specifically,a new 2-D chaotic map is designed for compression measurement and encryption operations.2-D CS and wavelet packet sparsification are applied to the plain image to obtain the compressed image.The fractal sorting matrix technique is introduced to scramble the pixel positions and the bidirectional diffusion is used to change the pixel values to eliminate the statistical properties of the compressed image.Exper-imental results indicate that the proposed chaotic map has stable and complex chaotic properties,and the encryption scheme shows good security and reconstruction performance the information entropy of the ciphertext image is above 7.99,and the PSNR of the decrypted image is above 34 dB.

关 键 词:图像加密 混沌映射 压缩感知 安全性分析 

分 类 号:TN977.73[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象