New exact traveling wave solutions of the coupled Boussinesq equations  

在线阅读下载全文

作  者:Mingyue Wang Youhe Zhou Jizeng Wang 

机构地区:[1]Key Laboratory of Mechanics on Disaster and Environment in Western China(Lanzhou University),the Ministry of Education,Lanzhou University,Lanzhou 730000,China [2]College of Civil Engineering and Mechanics,Lanzhou University,Lanzhou 730000,China

出  处:《Theoretical & Applied Mechanics Letters》2025年第2期108-114,共7页力学快报(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant No.11925204).

摘  要:The Boussinesq equations,pivotal in the analysis of water wave dynamics,effectively model weakly nonlinear and long wave approximations.This study utilizes the complete discriminant system within a polynomial approach to derive exact traveling wave solutions for the coupled Boussinesq equation.The solutions are articulated through soliton,trigonometric,rational,and Jacobi elliptic functions.Notably,the introduction of Jacobi elliptic function solutions for this model marks a pioneering advancement.Contour plots of the solutions obtained by assigning values to various parameters are generated and subsequently analyzed.The methodology proposed in this study offers a systematic means to tackle nonlinear partial differential equations in mathematical physics,thereby enhancing comprehension of the physical attributes and dynamics of water waves.

关 键 词:Coupled Boussinesq equations Exact traveling wave solutions Complete discriminant system Polynomial method 

分 类 号:O175.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象