检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Chenyu Wu Yufei Zhang
机构地区:[1]School of Aerospace Engineering,Tsinghua University,Beijing 100084,China
出 处:《Theoretical & Applied Mechanics Letters》2025年第2期122-130,共9页力学快报(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.12388101,12372288,U23A2069,and 92152301).
摘 要:Machine learning(ML)techniques have emerged as powerful tools for improving the predictive capabilities of Reynolds-averaged Navier-Stokes(RANS)turbulence models in separated flows.This improvement is achieved by leveraging complex ML models,such as those developed using field inversion and machine learning(FIML),to dynamically adjust the constants within the baseline RANS model.However,the ML models often overlook the fundamental calibrations of the RANS turbulence model.Consequently,the basic calibration of the baseline RANS model is disrupted,leading to a degradation in the accuracy,particularly in basic wall-attached flows outside of the training set.To address this issue,a modified version of the Spalart-Allmaras(SA)turbulence model,known as Rubber-band SA(RBSA),has been proposed recently.This modification involves identifying and embedding constraints related to basic wall-attached flows directly into the model.It is shown that no matter how the parameters of the RBSA model are adjusted as constants throughout the flow field,its accuracy in wall-attached flows remains unaffected.In this paper,we propose a new constraint for the RBSA model,which better safeguards the law of wall in extreme conditions where the model parameter is adjusted dramatically.The resultant model is called the RBSA-poly model.We then show that when combined with FIML augmentation,the RBSA-poly model effectively preserves the accuracy of simple wall-attached flows,even when the adjusted parameters become functions of local flow variables rather than constants.A comparative analysis with the FIML-augmented original SA model reveals that the augmented RBSA-poly model reduces error in basic wall-attached flows by 50%while maintaining comparable accuracy in trained separated flows.These findings confirm the effectiveness of utilizing FIML in conjunction with the RBSA model,offering superior accuracy retention in cardinal flows.
关 键 词:Turbulence modeling Field inversion Constrained-recalibration Machine learning
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7