LSD-DETR:a Lightweight Real-Time Detection Transformer for SAR Ship Detection  

在线阅读下载全文

作  者:GAO Gui LINGHU Wenya 

机构地区:[1]Faculty of Geosciences and Engineering,Southwest Jiaotong University,Chengdu 611756,China

出  处:《Journal of Geodesy and Geoinformation Science》2025年第1期47-70,共24页测绘学报(英文版)

基  金:National Nature Science Foundation of China(No.U24A20589);National Key Research and Development Program of China(No.2023YFB3905504);Innovation Team of the Ministry of Education of China(No.8091B042227);Innovation Group of Sichuan Natural Science Foundation(No.2023NSFSC1974).

摘  要:Recently,there has been a widespread application of deep learning in object detection with Synthetic Aperture Radar(SAR).The current algorithms based on Convolutional Neural Networks(CNN)often achieve good accuracy at the expense of more complex model structures and huge parameters,which poses a great challenge for real-time and accurate detection of multi-scale targets.To address these problems,we propose a lightweight real-time SAR ship object detector based on detection transformer(LSD-DETR)in this study.First,a lightweight backbone network LCNet containing a stem module and inverted residual structure is constructed to balance the inference speed and detection accuracy of model.Second,we design a transformer encoder with Cascaded Group Attention(CGA Encoder)to enrich the feature information of small targets in SAR images,which makes detection of small-sized ships more precise.Third,an efficient cross-scale feature fusion pyramid module(C3Het-FPN)is proposed through the lightweight units(C3Het)and the introduction of the weighted bidirectional feature pyramid(BiFPN)structure,which realizes the adaptive fusion of multi-scale features with fewer parameters.Ablation experiments and comparative experiments demonstrate the effectiveness of LSD-DETR.The model parameter of LSD-DETR is 8.8 M(only 20.6%of DETR),the model’s FPS reached 43.1,the average detection accuracy mAP50 on the SSDD and HRSID datasets reached 97.3%and 93.4%.Compared to advanced methods,the LSD-DETR can attain superior precision with fewer parameters,which enables accurate real-time object detection of multi-scale ships in SAR images.

关 键 词:detection transformer Synthetic Aperture Radar(SAR) LIGHTWEIGHT multi-scale ship detection deep learning 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象