Leveraging CNN to Analyse Facial Expressions for Academic Engagement Monitoring with Insights from the Multi⁃Source Academic Affective Engagement Dataset  

在线阅读下载全文

作  者:Noora C T Tamil Selvan P 

机构地区:[1]Department of Computer Science,Karpagam Academy of Higher Education,Coimbatore 641021,Tamil Nadu,India

出  处:《Journal of Harbin Institute of Technology(New Series)》2025年第2期65-79,共15页哈尔滨工业大学学报(英文版)

摘  要:The dynamics of student engagement and emotional states significantly influence learning outcomes.Positive emotions resulting from successful task completion stand in contrast to negative affective states that arise from learning struggles or failures.Effective transitions to engagement occur upon problem resolution,while unresolved issues lead to frustration and subsequent boredom.This study proposes a Convolutional Neural Networks(CNN)based approach utilizing the Multi⁃source Academic Affective Engagement Dataset(MAAED)to categorize facial expressions into boredom,confusion,frustration,and yawning.This method provides an efficient and objective way to assess student engagement by extracting features from facial images.Recognizing and addressing negative affective states,such as confusion and boredom,is fundamental in creating supportive learning environments.Through automated frame extraction and model comparison,this study demonstrates reduced loss values with improving accuracy,showcasing the effectiveness of this method in objectively evaluating student engagement.Monitoring facial engagement with CNN using the MAAED dataset is essential for gaining insights into human behaviour and improving educational experiences.

关 键 词:emotion recognition student engagement facial expressions academic affective engagement MAAED 

分 类 号:TP391[自动化与计算机技术—计算机应用技术] G442[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象