基于Vine-Copula-BiLSTM的风电机组齿轮箱状态评估  

WIND TURBINE GEARBOX HEALTH STATUS ASSESSMENT BASED ON VINE COPULA BILSTM

在线阅读下载全文

作  者:刘杰[1] 曹静 Liu Jie;Cao Jing(School of Mechanical Engineering,Shenyang University of Technology,Shenyang 110870,China)

机构地区:[1]沈阳工业大学机械工程学院,沈阳110870

出  处:《太阳能学报》2025年第4期494-503,共10页Acta Energiae Solaris Sinica

基  金:辽宁省教育厅资助项目(LQGD2020016)。

摘  要:为了科学合理地反映风电机组齿轮箱运行状态,提出一种基于Vine-Copula模型和双向长短期记忆(BiLSTM)算法的风电机组齿轮箱健康状态评估模型。首先,通过Vine-Copula模型分析数据采集与监视控制(SCADA)系统中各相关状态参数之间的耦合特性,然后利用BiLSTM算法构建健康状态下的标准残差,用于评估风电机组齿轮箱的健康状况。最后,使用实时数据计算残差值并与健康状态下的标准残差值进行比较,利用马氏距离来度量两者之间的差异,并结合健康指数对风电机组齿轮箱的状态等级划分4个等级(优秀、正常、注意和恶劣)。结果表明:针对某风电场发生故障时不同工况的实际数据进行验证,对于不同工况下风电机组齿轮箱油温超温状态,该模型可提前90和1186 min进行故障预警,实现对风电机组齿轮箱运行健康状态的评估。To accurately and scientifically assess the operational condition of wind turbine gearbox,a health status assessment model based on the Vine-Copula model and Bi-directional Long Short-Term Memory(BiLSTM)algorithm is proposed.Firstly,the coupling relationships between various state parameters in the Supervisory Control and Data Acquisition(SCADA)system are analyzed using the Vine-Copula model.Then,the BiLSTM algorithm is employed to construct standard residuals under healthy conditions,which are used to assess the gearbox's health status.Finally,real-time data are used to compute the residuals,which are compared with the standard residuals under healthy conditions.Mahalanobis distance is utilized to measure the difference between the covnputed residual and standard residual,and a health index is incorporated to categorize the gearbox’s health status into four levels:excellent,normal,attentive and poor.The results demonstrate that the model can provide early fault warnings for gearbox oil temperature overheating under various operating conditions,with lead times of 90 minutes and 1186 minutes,respectively.This model effectively enables the assessment of the operational health status of the wind turbine gearbox.

关 键 词:风电机组 状态评估 SCADA系统 预测分析 神经网络 

分 类 号:TM164[电气工程—电工理论与新技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象