锤击沉桩设计施工数智化技术研究与应用  

Study and application of intelligent technology in the design and construction of hammer sinking pile

在线阅读下载全文

作  者:刘续 李代 李雪龙 Liu Xu;Li Dai;Li Xuelong(WSGRI Engineering&Surveying Incorporation Limited,Wuhan 430080,China)

机构地区:[1]中冶武勘工程技术有限公司,武汉430080

出  处:《工程勘察》2025年第5期27-34,共8页Geotechnical Investigation & Surveying

基  金:武汉市城建局科技计划项目(202315)。

摘  要:锤击法沉桩因其冲击力大、施工效率高、造价低廉等优势,在一些地区得到广泛应用。然而,实际应用中存在配桩不合理、现场监管困难等问题,造成桩材浪费及桩体损坏等现象。针对这些问题,本文研究了锤击沉桩设计及施工的数智化技术,并成功将其应用于实际工程项目中。首先,基于现有设计方案及技术要求,结合场地勘察数据,对单桩桩长进行精准估算,并生成合理的配桩方案。接着,通过传感器实现施工数据的自动采集,并采用机器学习法实现停锤预测,以优化施工过程。最后,通过实际案例的验证,证明该系统在锤击法沉桩施工中的可行性与实用性。该研究显著提升了锤击沉桩施工管理水平,保障了施工质量,还为行业数智化发展提供了有力的理论与实践支持。Hammer driving method has been widely used in some areas because of its advantages such as high impact force,high construction efficiency and low cost.However,there are some problems in practical application,such as unreasonable pile allocation and difficulties in on-site supervision,resulting in pile waste and pile body damage.Aiming at these problems,the numerical intelligence technology of hammer driven pile design and construction was studied,and it is successfully applied in projects.First,based on the existing design scheme and technical requirements,combined with the site survey data,the single pile length is accurately estimated,and a reasonable pile allocation scheme is generated.Then,the pile foundation construction data is automatically collected by sensors,and the hammer stopping prediction is realized by machine learning method to optimize the construction process.Finally,the feasibility and practicability of the system in the construction of pile driven by hammering method are verified by a practical case.This study significantly improves the construction management level of hammer driven pile,guarantees the construction quality,and provides a strong theoretical and practical support for the development of industry data intelligence.

关 键 词:锤击沉桩 桩基数智化 合理配桩 停锤预测 

分 类 号:TU473[建筑科学—结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象