检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓力 周进[1] 刘全义 Deng Li;Zhou Jin;Liu Quanyi(College of Civil Aviation Safety Engineering,Civil Aviation Flight University of China,Guanghan,618307;Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province,Civil Avitation Flight University of China,Guanghan,618307;Sichuan Key Technology Engineering Research Center for All-electric Navigable Aircraft,Guanghan,618307)
机构地区:[1]中国民用航空飞行学院民航安全工程学院,广汉618307 [2]中国民用航空飞行学院民机火灾科学与安全工程四川省重点实验室,广汉618307 [3]四川省全电通航飞行器关键技术工程研究中心,广汉618307
出 处:《清华大学学报(自然科学版)》2025年第4期681-689,共9页Journal of Tsinghua University(Science and Technology)
基 金:国家自然科学基金民航联合研究基金(U2033206);四川省重点实验室项目(MZ2022JB01);航空科学基金(ASFC-20200046117001)。
摘 要:由于火灾具有快速蔓延的特性和较高的破坏力,实现火灾的早期探测是十分必要的,针对火灾检测算法的研究也尤为重要。该文提出了一种改进的YOLOv8算法,通过集成轻量型模块SlimNeck和切片辅助推理方法SAHI,分别优化了YOLOv8算法的网络结构和推理框架,将火灾数据集目标分类为火焰(fire)、烟雾(smoke)和干扰项(default)。实验结果表明,SlimNeck-YOLOv8算法比相关的先进算法具有更优的火灾检测性能,与YOLOv8模型相比,查全率(recall)增长了2.7%、平均精度(mAP)增长了0.2%,检测速度提高了35 fps,同时也降低了计算负担。在SlimNeck-YOLOv8基础上进一步优化推理框架所得的SlimNeck-YOLOv8+SAHI算法,有效改善了漏检与误检现象。该研究有助于提升火灾检测系统的速度和精度,为火灾预警工作提供了有力的技术支持。[Objective]With the rapid and continuous advancement of urbanization at an astonishing pace,fire accidents are happening with increasing frequency globally.A sudden fire outbreak holds a significantly high probability of causing extensive and severe harm to society.Research conducted on image-based fire detection algorithms is highly beneficial and valuable in terms of extracting the detailed morphological features of fires or smoke,aiding in effectively improving the efficiency of fire warnings.[Methods]This study presents and introduces an improved version of the YOLOv8 algorithm.Initially,the neck network of the algorithm is strengthened by integrating the SlimNeck lightweight module.Then,the inference framework of the YOLOv8 algorithm is substituted with slicing-aided hyper inference(SAHI)to further enhance the capability of the algorithm to detect small targets.Moreover,fire and smoke are two crucial target categories in fire scenarios.Given the inherent complexity of fire image backgrounds,which frequently contain numerous interferences from nonfire categories,fire dataset targets are classified as fire,smoke,and default.[Results]Experimental results clearly indicate that the SlimNeck-YOLOv8 algorithm showcases superior fire detection performance compared with other related advanced algorithms.In contrast to the YOLOv8 algorithm,the recall rate of this algorithm is elevated by 2.7%,mean average precision(mAP)is increased by 0.2%,and detection speed is accelerated by 35 frames/s.Simultaneously,with the developed algorithm,the computational burden is effectively reduced.[Conclusions]By integrating SlimNeck and SAHI,respectively,to optimize the network structure and inference framework of the YOLOv8 algorithm,the improved YOLOv8 algorithm is utilized for detecting fire and smoke,which has,to a certain extent,remedied the shortcomings of the YOLOv8 algorithm for this purpose.To effectively verify the performance and effectiveness of the proposed algorithm,the model is not merely trained on the fire dataset but
关 键 词:火焰与烟雾 改进的YOLOv8 SlimNeck 切片辅助超推理
分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26