检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨涅 熊才溢 程家圻 YANG Nie;XIONG Caiyi;CHENG Jiaqi(South China University of Technology,School of Mechanical&Automotive Engineering,Guangzhou 510641,China)
机构地区:[1]华南理工大学机械与汽车工程学院,广州510641
出 处:《清华大学学报(自然科学版)》2025年第4期714-720,共7页Journal of Tsinghua University(Science and Technology)
基 金:广东省自然科学基金面上项目(2024A1515012261)。
摘 要:隧道火灾预测的传统方法是使用传感器,但存在设备老化、误报率高等缺陷,因此需要开发更加高效的火灾预测手段。该文提出一种利用在隧道外安全区域可观测的外部烟气图像和深度学习算法,对隧道内的火源功率和火源位置进行同步预测的方案,首先通过FDS软件构建了100 m长隧道的外部烟气图像数据库,再利用VGG16神经网络框架建立了烟气图像与火源参数间的联系。结果表明,该文所提方案可对隧道火灾进行有效预测;基于隧道双侧正向视角的烟气图像训练所得模型的预测精度最高,对火源功率的预测误差小于25%,对火源位置的预测误差小于10 m;此外,当火源以0~2 m/s速度移动时,该文所提方案依旧可进行有效预测。该文成果可为隧道火灾的智能预测技术提供参考。[Objective]Tunnel fires pose remarkable challenges for evacuation and fire rescue operations due to inadequate ventilation and associated hazards,such as smoke accumulation,elevated temperatures,rapid heat release rates(HRRs),and severely reduced visibility.While various monitoring techniques,such as thermocouples,fibers,and CCTV cameras,have been proposed to monitor fire development trends and assist in firefighting and evacuation efforts,obtaining critical tunnel fire information,specifically real-time fire HRR and fire source locations,remains challenging.These difficulties arise mainly because conventional detection methods are often disrupted by high temperatures or obstructed by dense smoke,hindering effective information transmission.Hence,an improved method to predict tunnel fires is urgently needed.[Methods]In this study,external smoke images,i.e.,the smoke structure observed from outside the tunnel gate,and CNN-based deep-learning algorithms are used to predict real-time fire HRR and location within the tunnel.A 100-m full-scale tunnel is selected as the target,and its behavior is simulated using the Fire Dynamics Simulator to form an image database.During simulation,different fire parameters,such as maximum HRR,soot yield rate,and location,are varied based on typical vehicle types found in real tunnels,resulting in approximately 900 different tunnel models that generate diverse external smoke morphologies.The simulated smoke images are captured at 1 s intervals from four observation angles:front and side views from the left and right tunnel gates.As a result,approximately 388,800 smoke images are collected in the database.For the deep-learning algorithm,the VGG16 model,proposed by the Oxford CNN team,is employed as the target AI model for tunnel prediction.During model training,the VGG16 model continuously refines its internal parameters to minimize the error between AI predictions and the FDS simulation.[Results]Results show that the proposed method can effectively predict real-time variations in fire
分 类 号:TP394.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.51