检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王佳辰 李海涛[1,2] 常里 刁守通 姚艺豪 胡格格 余明高[1,2] WANG Jiachen;LI Haitao;CHANG Li;DIAO Shoutong;YAO Yihao;HU Gege;YU Minggao(School of Resources and Safety Engineering,Chongqing University,Chongqing,400044,China;National Innovation Platform(Center)for Industry-Education Integration of Energy Storage Technology,Chongqing University,Chongqing,400044,China)
机构地区:[1]重庆大学资源与安全学院,重庆400044 [2]重庆大学国家储能技术产教融合创新平台(中心),重庆400044
出 处:《清华大学学报(自然科学版)》2025年第4期759-768,共10页Journal of Tsinghua University(Science and Technology)
基 金:重庆市科技创新与应用发展项目(CSTB2023TIAD-KPX0089);中央高校基本科研业务费(2023CDJXY-006)。
摘 要:高压氢气泄漏是加氢站常见的安全隐患之一,严重影响加氢站的安全运行。准确且及时地识别泄漏位置,密切检测氢气体积分数,对于加氢站的燃爆安全防控至关重要。该文提出一种基于深度神经网络的氢气泄漏智能定位检测模型,为加氢站提供智能且及时的检测方案。首先利用计算流体动力学(CFD)模拟构建了不同泄漏位置、泄漏强度、风向的加氢站高压氢气泄漏的专有数据库,分析发现风向对氢气泄漏的影响最大;比较了6种现有深度学习的检测模型针对氢气泄漏位置的预测效果,发现基于卷积双向长短期记忆神经网络(CNN-BiLSTM)的模型准确率和F1分数均超过98%,展现了优异的检测性能和显著的鲁棒性。该研究为加氢站的氢泄漏检测提供了理论基础,也为智慧消防技术的实现提供了行之有效的解决方案。[Objective]High-pressure hydrogen leakage is a common safety concern in hydrogen refueling stations,significantly affecting the safe operation of these facilities.Accurate and timely identification of the leak source location and continuous monitoring of hydrogen concentration are essential for preventing explosions and ensuring the safety of refueling operations.[Methods]In this study,we propose a novel deep learning-based hydrogen leak detection model that provides a smart,real-time detection solution.The model leverages computational fluid dynamics(CFD)simulations to construct a proprietary database of high-pressure hydrogen leaks under various conditions,including different leak locations,flow rates,and wind directions.[Results]Our analysis revealed that wind direction plays the most significant role in influencing hydrogen dispersion patterns,which is crucial for accurately identifying leak sources and predicting the affected area.We compared six deep learning models:a backpropagation neural network(BPNN)based on a multi-layer perceptron(MLP),convolutional neural network(CNN),long short-term memory(LSTM)network,convolutional long short-term memory(CNN-LSTM),bidirectional long short-term memory(BiLSTM),and convolutional neural network bidirectional long short-term memory(CNN-BiLSTM).Among these models,the CNN-BiLSTM model exhibited the highest performance in leak detection tasks.By combining the strong local feature extraction capabilities of CNN with the long-term dependency capturing abilities of BiLSTM,this hybrid model significantly outperformed other models,achieving an accuracy and F1 score exceeding 98%.These results highlight the model's ability to handle complex temporal data efficiently,making it particularly effective for identifying hydrogen leaks in real-time industrial environments.The study also explores key factors influencing the performance of the detection models.We conducted sensitivity analyses on two critical hyperparameters:batch size and the number of training iterations.We found that
关 键 词:加氢站泄漏 氢泄漏行为特性 深度学习 泄漏检测 智慧消防
分 类 号:TP394.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7