检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑海荣[1] 张洋 何婧[2] 穆争社 ZHENG Hairong;ZHANG Yang;HE Jing;MU Zhengshe(Fujian Agriculture and Forestry University,350002;China Agricultural University,100083)
机构地区:[1]福建农林大学经济与管理学院,350002 [2]中国农业大学经济管理学院,100083
出 处:《财贸经济》2025年第4期59-76,共18页Finance & Trade Economics
基 金:国家社会科学基金重大项目“数字普惠金融支持乡村振兴的政策与实践研究”(22&ZD123);国家社会科学基金一般项目“‘新基建’背景下中国农村普惠金融发展对策研究”(20BJY153)。
摘 要:大数据如何助力贷款风险管理是金融科技时代的重要问题。本文首次考察农户使用手机银行时留下的数字足迹大数据,能否有效帮助银行进行风险管理。基于信号传递博弈理论,本文运用农商银行百万条农户贷款数据,揭示了农户银行数字足迹对贷款违约风险的影响。研究发现,农户银行数字足迹有效降低了贷款违约风险,且降低硬信息丰富群体贷款违约风险的作用强于软信息丰富群体。进一步分析表明,农户银行数字足迹对生产、经营等传统硬信息传递了有效的信息增量,对传统软信息传递的有效信息增量有限。异质性分析发现,在银行数字化转型程度越高、地区农村信用体系建设成熟度越高及普惠金融改革试验区的样本中,农户银行数字足迹降低贷款违约风险的作用效果越强。本文为发挥银行数字足迹等金融类大数据在贷款风险管理中的作用提供了事实依据。Information asymmetry is a critical barrier that hinders banks'management of farmers'loan risks and underpins their reluctance to lend to farmers,and the difficulty and high cost associated with such lending.Banks increasingly recognize the importance of“digital footprints”in risk control,and exploring the value of data and unlocking its potential has become an important part of digital risk management.Compared with traditional bank information,can digital footprints provide additional information,effectively manage credit risk,and reduce lending risks?Answering this question is essential for managing loan risk in the era of Big Data and offers a pathway for how to use digital finance to deepen rural financial services.Based on this,we constructed a signaling game model and empirically tested it using millions of farmers'loan records from rural commercial banks to identify the impact of digital footprints on farmers'loan default risk.The results show that digital footprints play a signaling role in preventing and controlling loan default risk,significantly reducing farmers'loan default risk.Furthermore,this risk-reducing effect is more pronounced for farmers with abundant hard information than for groups of farmers with abundant soft information.Mechanism analysis shows that digital footprints provide incremental information on farmers'production,operations and other flows of hard information,which strengthens the risk-reducing effect.However,farmers'digital footprints do not provide meaningful additional insights for traditional soft information.Moreover,in areas with a higher degree of digital transformation among banks,a more mature rural credit system,and in inclusive finance pilot zones,the risk-reducing effect of digital footprints is stronger.This study reveals the role of digital footprints in identifying and monitoring farmers'loan default risk and provides a factual basis for better exploiting financial big data in the credit market.This paper contributes to the existing literature in the following
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49