无人机巡线数据处理与地面站实时监控系统的融合技术  

Integration technology of unmanned aerial vehicle patrol data processing and real-time monitoring system of ground station

在线阅读下载全文

作  者:薛奇 XUE Qi(Patrol Brigade of Shuangliu District Bureau,Chengdu Public Security Bureau,Chengdu 610200,China)

机构地区:[1]成都市公安局双流区分局巡警大队,成都610200

出  处:《计算机应用文摘》2025年第9期242-244,共3页

摘  要:在公安线路巡逻中,凭借高效率、低成本和高安全性等特点,无人机已成为线路巡逻工作的重要技术工具。无人机能够快速覆盖大面积的巡逻线路,实时获取高分辨率的图像和视频数据,从而有效提高线路巡逻的效率和及时性。然而,无人机巡线数据的处理与地面站实时监控系统的融合技术仍面临诸多挑战。首先,如何高效处理和分析无人机采集的数据,以便快速做出决策,是当前技术发展的关键。其次,数据传输延迟、信息安全和系统兼容性等问题亟需解决。此外,如何实现无人机与地面站之间的实时信息交互,确保线路巡逻工作的顺利进行,是实现智能化公安线路巡检的重要环节。因此,针对无人机巡线数据处理和地面站实时监控系统的有效融合将是推动公安线路巡检智能化和自动化的重要方向。In power inspection,drones have become an important tool for inspection work due to their high efficiency,low cost,and high safety.Drones can quickly cover large inspection areas and obtain high-resolution images and video data in real-time,effectively improving inspection efficiency and accuracy.However,the integration technology of unmanned aerial vehicle patrol data processing and ground station real-time monitoring system still faces many challenges.Firstly,how to efficiently process and analyze the data collected by drones in order to make quick decisions is the key to current technological development.Secondly,issues such as data transmission latency,information security,and system compatibility also urgently need to be addressed.In addition,how to achieve real-time information exchange between drones and ground stations to ensure the smooth progress of inspection work is also an important link in realizing intelligent power inspection.Therefore,the effective integration of drone line patrol data processing and ground station real-time monitoring system will be an important direction to promote the intelligence and automation of power inspection.

关 键 词:无人机技术 公安线路巡逻 数据处理 地面站监控 智能化应用 

分 类 号:TM755[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象