检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭相利 GUO Xiang-li(Tongji University Architectural Design&Research InstituteCo.,Ltd.,Shanghai 200092,China)
机构地区:[1]同济大学建筑设计研究院(集团)有限公司,上海200092
出 处:《中国市政工程》2025年第2期40-43,47,143,共6页China Municipal Engineering
摘 要:几何非线性对于大跨度斜拉桥的斜拉索索力优化具有显著影响,忽略非线性效应将导致优化结果不准确。有约束的最小弯曲应变能法是一种优异的斜拉桥索力优化方法,在工程实践中得到了广泛应用,但其主要缺点是无法考虑斜拉桥的非线性效应。通过引入无应力索长影响矩阵的概念,对有约束的最小弯曲应变能法进行改进,使其可考虑斜拉桥的几何非线性效应,并在MATLAB中编制程序,实现对整个索力优化过程的自动化。采用改进后的方法对一座混凝土斜拉桥进行索力优化,结果表明,该方法可精确地考虑斜拉桥的非线性效应,求解收敛快速高效,索力优化结果科学合理,实现了索力优化过程自动化。Geometric nonlinearity significantly impacts the optimization of stay cable forces in long-span cable-stayed bridges,and neglecting nonlinear effects may lead to inaccurate optimization results.The constrained minimum bending strain energy method is an excellent approach for stay cable force optimization and has been widely applied in engineering practice.However,its primary limitation lies in its inability to account for geometric nonlinearity.By introducing the concept of an unstressed cable length influence matrix,this study improves the constrained minimum bending strain energy method to incorporate geometric nonlinear effects.A MATLAB program was developed to automate the entire cable force optimization process.The improved method was applied to optimize cable forces for a concrete cable-stayed bridge.Results demonstrate that the method effectively considers geometric nonlinearities,achieves rapid and efficient convergence,and yields scientifically rational cable force optimization outcomes,thereby enabling full automation of the optimization process.
分 类 号:U448.27[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200