AI赋能高校未来学习中心建设:框架、路径和挑战  

AI Empowering Construction of Future Learning Centers in Higher Education:Framework, Pathway, and Challenge

在线阅读下载全文

作  者:曾湘琼[1] 梁良 ZENG Xiang-qiong;LIANG Liang(Xiangtan University Library,Xiangtan 411105,China;Public Administration of Xiangtan University,Xiangtan 411105,China)

机构地区:[1]湘潭大学图书馆,411105 [2]湘潭大学公共管理学院,411105

出  处:《大学图书情报学刊》2025年第3期18-24,共7页Journal of Academic Library and Information Science

基  金:湖南省图书馆学会课题“面向教育4.0的高校未来学习中心优秀传统文化传承模式构建研究”(XHZD1025)。

摘  要:教育变革和技术迭代给高校未来学习中心建设带来机遇与挑战。文章提出利用AI赋能未来学习中心建设,构建未来学习中心框架,设计建设路径,指出建设过程中面临挑战。未来学习中心框架主要包括融合人工智能大模型技术的平台支持层、业务驱动层和服务应用层三部分;从建设目的和原则、多模态资源开发利用、打造服务体系和构建应用生态等方面设计未来学习中心建设路径;探究AI赋能未来学习中心建设过程中可能出现的挑战,为数字时代未来学习中心建设与知识服务的创新发展提供思路与解决方案。Educational transformation and technological iteration have brought both opportunities and challenges to the construction of future learning centers in universities.This article proposes to utilize AI to empower the construction of future learning centers,build a framework for future learning centers,design the construction path,and point out the challenges faced during the construction process.The framework of future learning centers mainly includes three parts:the platform support layer integrating large-scale AI model technology,the business-driven layer,and the service application layer.The construction path of future learning centers is designed from aspects such as construction purposes and principles,multi-modal resource development and utilization,service system construction,and application ecosystem construction.Finally,it explores the possible challenges in the process of AI empowering the construction of future learning centers,providing new ideas and solutions for the construction of future learning centers and the innovative development of knowledge services in the digital age.

关 键 词:人工智能 未来学习中心 高校图书馆 多模态 知识服务 

分 类 号:G258.6[文化科学—图书馆学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象