检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Cong Zhang Chutong Zhang Lei Shen Renwei Guo Wan Chen Hui Huang Jie Ji
机构地区:[1]Electric Engineering Department,Huaian Hongneng Group Co.,Ltd.,Huaian,223002,China [2]Faculty of Automation,Huaiyin Institute of Technology,Huaian,223002,China
出 处:《Energy Engineering》2025年第5期2077-2097,共21页能源工程(英文)
基 金:funded by Huaian Hongeng Group Co.,Ltd.Relying on theproject“Researchon Key Technologies of Integrated Photovoltaic and Energy Storage Electric Vehicle Charging Stations”(Project Number:SGTYHT/23-JS-001).
摘 要:This paper presents a solution for energy storage system capacity configuration and renewable energy integration in smart grids using a multi-disciplinary optimization method.The solution involves a hybrid prediction framework based on an improved grey regression neural network(IGRNN),which combines grey prediction,an improved BP neural network,and multiple linear regression with a dynamic weight allocation mechanism to enhance prediction accuracy.Additionally,an improved cuckoo search(ICS)algorithm is designed to empower the neural network model,incorporating a gamma distribution disturbance factor and adaptive inertia weight to balance global exploration and local exploitation,achieving a 40%faster convergence rate.A multi-objective snake optimization algorithm is also developed to optimize economic cost,grid stability,and energy utilization efficiency using energy storage capacity as the decision variable.The experimental results,based on a 937-day load dataset from a chemical park in Jiangsu Province,show that the IGRNN model has better prediction accuracy than traditional models,with an RMSE of 11.1361,an MAE of 8.264,and an R^(2) of 96.90%.The optimized energy storage system stabilizes the daily load curve at 800 kW,reduces the peak-valley difference by 62%,and decreases grid regulation pressure by 58.3%.This research provides theoretical and practical support for energy storage planning in high renewable energy proportion grids.Future work will focus on integrating weather data and dynamic optimization strategies under policy constraints to improve system applicability in real-world scenarios.
关 键 词:Predictive models capacity allocation cost-benefit analysis multi-objective optimization
分 类 号:TM73[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222