检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李东庭 康海燕[1,2] LI Dongting;KANG Haiyan(School of Computer,Beijing Information Science and Technology University,Beijing 102206,China;Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing,Beijing 100191,China)
机构地区:[1]北京信息科技大学计算机学院,北京102206 [2]未来区块链与隐私计算高精尖创新中心,北京100191
出 处:《计算机集成制造系统》2025年第4期1337-1345,共9页Computer Integrated Manufacturing Systems
基 金:国家社科基金年度资助项目(21BTQ079);未来区块链与隐私计算高精尖中心项目(GJJ-24)。
摘 要:为了解决工业大数据共享时,中间参数的隐私泄露以及恶意节点上传低质量模型的问题,结合目前较为火热的长安链,提出了基于蜂群学习的工业大数据共享方法。首先构建蜂群学习架构;其次将数据按照用户维度和用户特征维度进行划分;对用户维度重复度低而特征维度重复度高的数据提出了基于横向蜂群学习的工业大数据共享算法,对用户维度重复度高而特征维度重复度低的数据提出了基于纵向蜂群学习的工业大数据共享算法;最后构造了一个评分方法,将节点训练好的模型通过评分方法进行评分,服务器最终选择出评分较高的模型进行整合。通过多次实验后验证了所提方法不仅能够防止学习过程中泄露中间参数的隐私,还能增强参与联邦学习过程的节点之间的互相信任,从而实现一个可信的联邦学习模型,增强其隐私保护。To solve the problems of privacy leakage of intermediate parameters and uploading of low-quality models by malicious nodes during industrial big data sharing,a method of industrial big data sharing based on bee colony learning was proposed in combination with the hot ChainMaker.The learning structure of swarm was first constructed.Then the data was divided according to user dimension and user characteristic dimension.An industrial big data sharing algorithm based on horizontal swarm learning was proposed for data with low user dimension repetition and high feature dimension repetition,and an industrial big data sharing algorithm based on vertical swarm learning was proposed for data with high user dimension repetition and low feature dimension repetition.A scoring method was constructed to score the models trained by the nodes,and the models with higher score were selected to integrate.With many experiments,the proposed method was verified could not only prevent the privacy of intermediate parameters from leaking in the learning process,but also enhance the mutual trust between the nodes involved in the federated learning process,thus realizing a credible federated learning model and enhancing its privacy protection.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222