检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋金珂 王淑营[1] JIANG Jinke;WANG Shuying(School of Computing and Artificial Intelligence,Southwest Jiaotong University,Chengdu 610031,China)
机构地区:[1]西南交通大学计算机与人工智能学院,四川成都610031
出 处:《计算机集成制造系统》2025年第4期1383-1395,共13页Computer Integrated Manufacturing Systems
基 金:四川省重大科技专项资助项目(2022ZDX0003)。
摘 要:在装备领域,知识图谱技术已成为设计、制造和运维的关键支撑工具。为了提升复杂装备知识图谱的数据质量,研究了其完整性约束问题。首先,分析了复杂装备全生命周期的数据特征,并构建了相应的知识图谱。提出通用型约束和针对特定知识类型的专用约束两种模型。接着,开发了全局约束的自动构造算法和局部约束的半自动构造算法,以优化知识图谱的构建过程,减少人工干预,提高效率和适用性。实验验证结果表明,构造算法有效替代了传统的人工约束构建方法,显著提升了知识图谱的构建效率。In the field of equipment engineering,knowledge graph technology has become a key support tool for design,manufacturing and operation.To enhance the data quality of complex equipment knowledge graphs,the issue of integrity constraints was studied.The data characteristics throughout the entire lifecycle of complex equipment were analyzed,leading to the construction of corresponding knowledge graphs.Two models were proposed:a general constraint applicable to all complex equipment knowledge and a specific constraint tailored for particular knowledge types.Subsequently,an automatic construction algorithm for global constraints and a semi-automatic construction algorithm for local constraints were developed to optimize the knowledge graph construction process,reduce manual intervention and improve efficiency and applicability.Experimental validation demonstrated that the construction algorithms effectively replaced traditional manual constraint building methods,significantly improving the efficiency of knowledge graph construction.
关 键 词:知识图谱 复杂装备 数据质量 知识约束 构造算法
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.239