Diversity-Based Recruitment in Crowdsensing by Combinatorial Multi-Armed Bandits  

在线阅读下载全文

作  者:Abdalaziz Sawwan Jie Wu 

机构地区:[1]Center for Networked Computing,Temple University,Philadelphia,PA 19122,USA

出  处:《Tsinghua Science and Technology》2025年第2期732-747,共16页清华大学学报自然科学版(英文版)

基  金:supported in part by NSF(Nos.SaTC 2310298,CNS 2214940,CPS 2128378,CNS 2107014,and CNS 2150152).

摘  要:Mobile Crowdsensing(MCS)represents a transformative approach to collecting data from the environment as it utilizes the ubiquity and sensory capabilities of mobile devices with human participants.This paradigm enables scales of data collection critical for applications ranging from environmental monitoring to urban planning.However,the effective harnessing of this distributed data collection capability faces significant challenges.One of the most significant challenges is the variability in the sensing qualities of the participating devices while they are initially unknown and must be learned over time to optimize task assignments.This paper tackles the dual challenges of managing task diversity to mitigate data redundancy and optimizing task assignment amidst the inherent variability of worker performance.We introduce a novel model that dynamically adjusts task weights based on assignment frequency to promote diversity and incorporates a flexible approach to account for the different qualities of task completion,especially in scenarios with overlapping task assignments.Our strategy aims to maximize the overall weighted quality of data collected within the constraints of a predefined budget.Our strategy leverages a combinatorial multi-armed bandit framework with an upper confidence bound approach to guide decision-making.We demonstrate the efficacy of our approach through a combination of regret analysis and simulations grounded in realistic scenarios.

关 键 词:diverse allocation mobile crowdsensing multi-agent systems multi-armed bandits online learning worker recruitment 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象