检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:兰亮云 尹冀尧 常智渊 郭优 孔祥伟[1] LAN Liangyun;YIN Jiyao;CHANG Zhiyuan;GUO You;KONG Xiangwei(School of Mechanical Engineering and Automation,Northeastern University,Shenyang 110819,China;State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization,Panzhihua 617000,China;Institute of Special Equipment Supervision and Inspection,Fushun 113000,China)
机构地区:[1]东北大学机械工程与自动化学院,沈阳110819 [2]攀枝花钢铁研究院有限公司钒钛资源综合利用国家重点实验室,攀枝花617000 [3]抚顺市特种设备监督检验所,抚顺113000
出 处:《中国表面工程》2025年第1期255-264,共10页China Surface Engineering
基 金:国家自然科学基金(51605084)。
摘 要:在长距离输送掺氢或酸性油气能源的严峻挑战下,管线钢焊接接头因其显微组织和力学性能的骤变,可能导致局部高氢脆敏感性,然而接头各区域的本征抗氢脆性仍缺乏细致研究。采用电化学充氢加速试验评价X100管线钢焊接件的氢损伤行为,结合显微组织表征等技术揭示接头各区域的氢损伤敏感性以及显微组织与氢损伤的内在关联。同一充氢条件下,X100管线钢焊件不同区域氢的逃逸速率不同,由大到小依次为母材区、热影响区和焊缝区;母材区以氢鼓泡为主的表面氢损伤形式,典型氢鼓泡的高度在微米数量级,但直径可达数毫米,而热影响区和焊缝的表面损伤则以氢致开裂为主,表面无氢鼓泡现象。随充氢电流密度的增加,表面氢损伤程度恶化,如氢鼓泡数量和尺寸均显著增加;整体上,焊缝区具有很好的抗氢损伤能力,而母材区最容易出现氢损伤;但当充氢电流密度较高时,热影响粗晶区氢损伤敏感性显著增加,表现出高氢致开裂率。焊缝区的高抗氢损伤能力主要归因于针状铁素体的精细有效晶畴及极低比例的随机取向晶界;而母材区中压扁的原始奥氏体晶界是氢致开裂/氢鼓泡形核的最优位置,贯穿式贝氏体板条晶界为氢的快速扩散提供通道,促进了氢致裂纹沿轧制方向进行扩展。研究成果揭示了高强管线钢焊接接头各区域的氢脆敏感性与其显微结构的内在关系,可为监测和预测焊接接头在不同氢逸度环境下的结构完整性提供基础理论。Blending hydrogen with natural gas is an effective method for improving the energy content per unit volume of natural gas and reducing greenhouse gas emissions,as hydrogen serves as a green and clean energy carrier.However,the presence of hydrogen poses a significant challenge for pipelines:hydrogen embrittlement(HE).Hydrogen can permeate into the metal,deteriorating its mechanical properties,particularly in welded joints,which are particularly vulnerable to HE due to factors such as inhomogeneous microstructures and oxide inclusions.To date,however,the relationship between the microstructure of each subzone of a welded joint and its intrinsic susceptibility to hydrogen embrittlement has not been thoroughly investigated.In this study,electrochemical hydrogen charging was employed to investigate the hydrogen damage behavior of high-strength X100 pipeline steel weldments in the absence of external stress.Combining microstructural characterization techniques—such as optical microscopy,laser scanning confocal microscopy,electron backscattering diffraction(EBSD),and quantitative analyses of hydrogen damage levels at each subzone of the welded joint allowed for a detailed exploration of the intrinsic susceptibility of each subzone's microstructure to HE.The results showed that,after identical hydrogen charging,the hydrogen escape velocity varied among different subzones,decreasing in the following order:base metal,heat-affected zone,and weld metal.According to the surface hydrogen damage modes observed,hydrogen blisters were identified as the primary damage mode for the base metal,exhibiting a height of several micrometers and a diameter of several millimeters.In contrast,hydrogen-induced cracking occurred in the weld metal and heat-affected zone on the sample surface,rather than hydrogen blister damage.With increasing current density,both the size and number of hydrogen blisters notably increased,accompanied by severe hydrogen-induced cracking in the cross-section.Quantitative analyses revealed that the weld metal e
关 键 词:高强管线钢 焊接接头 氢损伤 显微组织 EBSD
分 类 号:TG172[金属学及工艺—金属表面处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.127