PROXIMAL ADMM APPROACH FOR IMAGE RESTORATION WITH MIXED POISSON-GAUSSIAN NOISE  

在线阅读下载全文

作  者:Miao Chen Yuchao Tang Jie Zhang Tieyong Zeng 

机构地区:[1]Department of Mathematics,Nanchang University,Nanchang 330031,China [2]Department of Public Teaching,Quzhou College of Technology,Quzhou 324000,China [3]School of Mathematics and Information Science,Guangzhou University,Guangzhou 510006,China [4]Department of Mathematics,The University of Hong Kong,Hong Kong SAR,China [5]Department of Mathematics,The Chinese University of Hong Kong,Hong Kong SAR,China

出  处:《Journal of Computational Mathematics》2025年第3期540-568,共29页计算数学(英文)

基  金:supported by the National Natural Science Foundations of China(Grant Nos.12061045,12031003);by the Guangzhou Education Scientific Research Project 2024(Grant No.202315829);by the Guangzhou University Research Projects(Grant No.RC2023061);by the Jiangxi Provincial Natural Science Foundation(Grant No.20224ACB211004).

摘  要:Image restoration based on total variation has been widely studied owing to its edgepreservation properties.In this study,we consider the total variation infimal convolution(TV-IC)image restoration model for eliminating mixed Poisson-Gaussian noise.Based on the alternating direction method of multipliers(ADMM),we propose a complete splitting proximal bilinear constraint ADMM algorithm to solve the TV-IC model.We prove the convergence of the proposed algorithm under mild conditions.In contrast with other algorithms used for solving the TV-IC model,the proposed algorithm does not involve any inner iterations,and each subproblem has a closed-form solution.Finally,numerical experimental results demonstrate the efficiency and effectiveness of the proposed algorithm.

关 键 词:Image restoration Mixed Poisson-Gaussian noise Alternating direction method of multipliers Total variation 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象