检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:余四豪 陈铃 王娇[1,2] 郝好山[1] 刘少辉[1,2] YU Sihao;CHEN Ling;WANG Jiao;HAO Haoshan;LIU Shaohui(Henan Key Laboratory of Electronic Ceramic Materials and Application,College ofMaterials Engineering,Henan University of Engineering,Zhengzhou 451191,China;Henan International Joint Laboratory of Rare Earth Composite Materials,College ofMaterials Engineering,Henan University of Engineering,Zhengzhou 451191,China)
机构地区:[1]河南工程学院河南省电子陶瓷材料与应用重点实验室,材料工程学院,郑州451191 [2]河南工程学院河南省稀土复合材料国际联合实验室,材料工程学院,郑州451191
出 处:《功能材料》2025年第4期4136-4141,共6页Journal of Functional Materials
基 金:国家自然科学基金项目(51902088);河南省高校科技创新人才项目(21HASTIT014);河南省优秀青年基金项目(212300410031);河南省科技攻关项目(232102231041,252102231014)。
摘 要:工作温度低、性能良好且稳定的氧吸附/脱附材料在氧气分离技术、燃料电池电极等领域具有重要的应用价值。为了提升材料的氧吸附/脱附性能,采用溶胶-凝胶法成功合成了不同浓度稀土元素Gd^(3+)掺杂YBaCo_(4)O_(7+δ)氧吸附纳米材料。通过扫描电镜(SEM)、X射线衍射(XRD)及热重分析等手段,系统地探究了稀土元素Gd^(3+)掺杂浓度对YBaCo_(4)O_(7+δ)纳米粉体的微观形态、晶体结构及其氧吸附/脱附特性的影响。实验测试结果发现,在较低掺杂浓度水平下,稀土元素Gd^(3+)掺杂对Y_(1-x)Gd_(x)BaCo_(4)O_(7+δ)纳米粉体的微观形貌影响较小,掺杂前后纳米粉体的形貌均为球形,粉体尺寸介于200~350 nm。稀土元素Gd^(3+)可以进入YBaCo_(4)O_(7+δ)晶格,掺杂前后Y_(1-x)Gd_(x)BaCo_(4)O_(7+δ)均保持为单相114结构。在氧吸附/脱附性能方面,与YBaCo_(4)O_(7+δ)相比,Y_(0.6)Gd_(0.4)BaCo_(4)O_(7+δ)纳米粉体的氧吸附变化率从1.73%显著提高到了4.22%。这表明Gd^(3+)的加入能有效增强YBaCo_(4)O_(7+δ)纳米材料的氧吸附能力。此外,在N2/O_(2)气体环境的循环变换下,Y_(0.6)Gd_(0.4)BaCo_(4)O_(7+δ)展现出良好的循环稳定性。Gd^(3+)掺杂对YBaCo_(4)O_(7+δ)纳米材料氧吸附性能的提升,可归结为其优化了材料内部的氧气存储空间,从而促进了氧离子的吸附与释放过程。Materials with excellent oxygen adsorption and desorption performance at low temperatures hold significant potential in fields such as oxygen separation technologies and fuel cell electrodes.To enhance the oxygen adsorption and desorption performance of the materials,YbBaCo_(4)O_(7+δ)nanomaterials doped with the rare earth element Gd^(3+)were synthesized using the sol-gel technique in varying concentrations.Systematic investigations were conducted using scanning electron microscopy(SEM),X-ray diffraction(XRD),and thermogravimetric analysis to examine how the concentration of Gd^(3+)doping influences the microstructure,crystal structure,and oxygen adsorption/desorption performances of the YbBaCo_(4)O_(7+δ)nanoparticles.The findings indicate that the influence of Gd on the morphology of the Y_(1-x)Gd x BaCo_(4)O_(7+δ)nanoparticles is minimal at the low doping concentration of Gd^(3+).Both before and after doping,the nanoparticles maintain a spherical shape,with sizes ranging from 200 to 300 nm.Gd^(3+)is capable of integrating into the lattice of YBaCo_(4)O_(7+δ),and the Y_(1-x)Gd_(x)BaCo_(4)O_(7+δ)compound retains its single-phase 114 structure.In terms of oxygen adsorption and desorption,the Y_(0.6)Gd_(0.4)BaCo_(4)O_(7+δ)nanoparticles demonstrate a substantial increase in oxygen uptake,rising from 1.73%to 4.22%.This indicates that incorporating Gd^(3+)effectively improves the oxygen adsorption capacity of these nanomaterials.Furthermore,under cyclical transitions in an N 2/O_(2)gas environment,Y_(1-x)Gd x BaCo_(4)O_(7+δ)exhibits commendable cycle stability.The enhancement in oxygen adsorption performance of YBaCo_(4)O_(7+δ)due to Gd doping is likely due to the optimization of internal oxygen storage space,facilitating the adsorption and release processes of oxygen ions.
关 键 词:YBaCo_(4)O_(7+δ) 氧吸附/脱附性能 稀土元素掺杂 纳米粉体 微观机理
分 类 号:TB34[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7