检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贺洪江[1] 刘毅祥 王双友 He Hongjiang
机构地区:[1]河北工程大学信息与电气工程学院,河北邯郸056000 [2]邯郸学院软件学院,河北邯郸056005
出 处:《江苏农业科学》2025年第5期244-250,共7页Jiangsu Agricultural Sciences
基 金:河北省高等学校科学技术研究项目(编号:ZC2022095)。
摘 要:叶菜病虫害的早期识别是提高叶菜产量和质量的重要保障,为提高常见叶菜病虫的检测精度,针对实际生产中的复杂环境,以YOLO v5s为基准模型,提出一种改进的FV-YOLO v5s模型。首先,在主干网络中融合CA注意力机制模块与C3特征提取模块,形成了C3CA模块以增强叶菜病虫害的特征提取能力。接着在颈部网络中使用Slim-neck范式设计,高效提取图像中小尺寸目标的特征,增强特征融合的效率。最后用WIoU损失对原损失函数CIoU进行替换,更快地达到收敛状态并提升模型检测性能。结果表明,新模型的精度、召回率和平均精度均值分别达到了92.2%、91.5%、94.8%。改进后的模型FV-YOLO v5s对比原YOLO v5s模型算法,精度、召回率、平均精度均值分别提高2.7、1.4、1.8百分点,优于现有的识别网络,包括YOLO v7、YOLO v8、Faster R-CNN等模型。FV-YOLO v5s模型适用于现代农业生产环境,有助于快速识别和检测叶菜病虫害,且该研究为智慧农业中的叶菜高品质和高产量提供了依据,从而最大限度地减少经济损失。
关 键 词:叶菜病虫害 YOLO v5s CA注意力机制 Slim-neck WIoU损失函数
分 类 号:S126[农业科学—农业基础科学] TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117